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ABSTRACT:- This paper addresses the concerns of Faraway and Chatfield (1998) who questioned
the forecasting ability of Artificial Neural Networks (ANN). In particular the paper compares the
performance of Artificial Neural Networks (ANN) and ARIMA models in forecasting of seasonal
(monthly) Time series. Using the Airline data which Faraway and Chatfield (1998) used and two
other data sets and taking into consideration their suggestions, we show that ANN are not as bad as
Faraway and Chatfield put it. Aruleof selecting input lagsinto theinput set based on their relevance/

contribution to the model is also proposed.
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INTRODUCTION

Time series forecasting is a common problem. Many
approachesto this problem have been used with Box and
Jenkins (1976) devel oping the integrated autoregressive
moving average (ARIMA) methodology for fitting aclass
of linear time series models. Statisticiansin anumber of
ways have addressed the restriction of linearity in the
Box-Jenkins approach and robust versions of various
ARIMA models have been developed in addition to
nonlinear time series models. More recently, Artificial
Neural Networks (ANN) have been studied as an
alternative to these nonlinear model-driven approaches.
Because of their characteristics, ANN belong to the
data-driven approach, where the analysis depends on the
available data. In the recent past many statisticians have
investigated the properties of neura networks and have
found considerabl e overlap between statistical and neural
network modelling, seefor example Bishop (1995).

ANN have been used for awide variety of applications,
where statistical methods are traditionally employed. In
time series applicationsthey have been used in forecasting
future values. Several authors have done comparison
studies between statistical methods and ANN (see e.g.
Titterington, 1999). Intime seriescontext Hill et al. (1996),

Kuan and White (1994), among others have investigated
theforecasting ability of ANN but Faraway and Chatfield
(1998) reviewed their work and questioned their findings.
This paper seeks to address the issues raised by those
who do not embrace ANN models as an alternative for
statistical modeling. In particular we focus on Faraway
and Chatfield (1998) work and try to empirically dispel
their fears on forecasting ability of ANN.

The statistical approach to forecasting involves the
construction of stochastic models to predict the value of
an observation x, , using previous observations. This is
often accomplished using linear stochastic difference
equation model s, with random input. The most important
classof such modelsisthelinear autoregressiveintegrated
moving average (ARIMA) model. Before we present our
results, we give a brief review of ARIMA and ANN
techniques respectively and optimal prediction from the
models.

ARIMAMODELLING
Letx:t=0,1,2, ... N be an observed monthly time

series. If thistime series contains seasonality, a seasonal
periodic component repeatsitself after every s= 12
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observations and thus we expect x, to depend on terms
such asx ,,and perhaps x ,,aswell astermssuch asx,, ,
X oy een Box and Jenkins (1976) have generalized the
ARIMA model to deal with seasonality, thus coming up
withamodel known as SARIMA (seasonal autoregressive
integrated moving average) writtenas ARIMA (p, d, q)(P,

D,Q)sand given by
¢, (B)® (W, = 60(B)O,(B°)q (1)
where @, ® ,00q, O, are polynomiasof order p, P, g, Q

respectively, (] ‘S’E 4is the simple differencing
operator of order d, [P is the seasonal differencing

operator of order D Bixt =X_, isthe backward shift
operator and s.is the seasonal period.

The determination of the ARIMA model orders involves
matching the patterns in the sample autocorrelation
functions (ACF) and sample partial autocorrelation
functions (PACF) with the theoretical patterns of the
known modelsto identify the orders. Akaike Information
Criterion (AIC), [Akaike (1974)] hasalso been widely used
which can be used for statistical model identificationin a
widerange of situationsand isnot restricted to time series.
Theoptimal order of the model ischosen by the number of
model parameters, N_, a function of p and g, which
minimizes AIC(Np ). The performance of AIC has been
criticized especially when N, is large and a recent
modification of AIC by Hurvich and Tsai (1989) adds a
bias adjustment which |eadsto acriterion denoted by Al1Cc
and given by;

2Np(Np +1) o

— o _1

Burnham and Anderson (1998) insist on the use of AICc
irrespective of the size of the data while Faraway and
Chatfield (1998) recommends the use of Bayesian
Information Criterion (BIC) because it penalises extra
parametersjust like AICc.The BIC isdefined by;

BIC(N,) =N/nGZ +N_ +N_log(N) )

Once the form of the model has been specified its
parameters are then estimated using maximum likelihood
estimation method or any other convenient one. The basic
assumption in ARIMA models is that the errors are
uncorrelated random variableswith mean zero and constant
variance. It is therefore expected that the residuals have
the characteristics of the white noise. Chatfield (1975),
Abraham and Ledolter (1983) have suggested that we
“Just” look at the first few values of autocorrelations, r,

AIC(N,) = AIC +

(for residuals) particularly at lags 1, 2 and thefirst seasonal
lag (if any) and seeif they are significantly different from
zero (i.ewhether they fall outsidethelimits+. If only one
(or two) valuesof estimatedr, aresignificant at lagswhich
have no obvious physical meaning there would be no
enough evidence to reject the model. A more
comprehensive treatment of linear ARIMA-models may
be found in Box and Jenkins (1976). Box-Pierce (1970)
came up with atest for serially correlated residuals in
ARMA (p,q). The test has been extended to cover
seasona models, Chatfield (1975). It hasbeen shown that
if the appropriate model for the differenced series is
ARIMA (p, d, g)(P, D,Q)s process then the statistic

Q=n(n +2)2(n _k)_lsz - X(Zm—p-q—P%?)

If the calculated Q statistic exceeds the tabulated

2

X , then the adequiacy of the fitted model
a,(m-p-g-P-Q)

would be questioned. It ishowever advisableto combine
several methodsin diagnostic checking. Finally and once
the model has been found adequate, prediction /
forecasting of future valuesis done.

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is, basically, a
non-parametric attempt to model the human brain. ANN
acts like a human brain, trying to recognize regularities
and patternsin the data. They can learn from experience
and generalize based on their previous knowledge.
Although biologically inspired, ANN has found
applications in many different fields, especially for
forecasting and classification purposes. The topology
of ANN has been sketched in Fig. 1.

Infigurel, variousinputsto the network are represented
by the mathematical symbol, x ; each of theseninputsis
multiplied by a connection weight w, depending on the
hidden neuron it is connected to. In the simplest case,
these products are simply summed, fed through atransfer
function to generate a result and then output y.

Eventhough all artificial neural networksare constructed
from thisbasic building block the fundamentalsmay vary
in these building blocks and there are differences. The
processing elements are able to ‘’learn”” by receiving
weighted inputs that, with adjustment, time, and
repetition, can be made to produce appropriate outputs.
A multi layer feedforward network with at least one hidden
layer and a sufficient number of hidden units/neuronsis
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Figure 1: Topology of Artificial Neural Network

capable of approximating any Borel-measurable function,
Hornik et al (1989), and therefore ANN ispowerful enough
to represent any form of time series.

TIMELAGGEDNEURAL NETWORKS

Timelagged Neural Networks (TLNN) isnetwork inwhich
temporal dependence in time series data is captured by
supplying the network with present value of the input, x,
inadditionto p past valuesof theinputx ,, X ,, X The
relationship between output y, and the input is assumed
to be of theform

yt=f(xt, xt-1 xt-2,.xt-p)+et ©)
where g, isazero mean Gaussian variable with variance

Uez and f(.) isanon-linear function in its arguments.

We may view this as a non-linear autoregressive
process. In neural network context wewrite ARNN to
mean Autoregressive Neural Network.

Let s be the seasonal period and assume that the series
one season in the past contains enough information about
the patternsin thetime seriesdata. Since dataisavailable
up to timet the input window is shifted to start at s steps
below this time. The network is then trained with inputs

Xor Xqarg  Xarg » -+ Xiprg 15> 0 which we denote by the
vector x, and desired or target variable x in an
autoregressive model. Upon convergence, the network is
fedwithx , X, , X, ..X, » SO asto output X, . an s steps
ahead forecast of x. Assuming that the output neuron is
linear, the NN output of the ki hidden neuron is given by

“ P O]
X (t) =¢§Zwmx[_. +b% ©)

where @(.) isthe activation function of the neuron k and

w, areits connection weights, [Cichocki and Unbehauen
(1993), Faraway and Chatfield (1998)]. Some of the
commonly used activation functions are the linear
function, where k is a real-valued constant, the logistic

4

1+¢
function . For ssteps ahead forecasting, thetraining phase
model isgiven by

o P O
X = Z’Who{pélz Win X +bn%+bo @

where N, is the number of neurons in the hidden layer

function @(2) = and the hyperbolic tangent
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with connection weights w,  to the output neuron, which
hasabiasb, . The forecasting model is given by

. il _ O
Xt+s = ;Who(pi \NIhXt—I +Q1%+bo (8)

The parameter space includes the vector of biases, the
matrix w, = ((w,,)) of weights connecting the inputs with
the hidden neurons and the matrix w, = ((w, )) of weights
linking the hidden neurons to the output neuron. To

estimate ¢ =(b,w,,W,) , nonlinear least squares
procedures are used to minimize

E(QU):INZG(Z :tNZh(X[ -%)* ©

The optimization techniques for minimizing the error
function 9 arereferred to aslearning rules. The best-known
learning ruleisthe error backpropagation, (Rumelhart et
al., 1986) or back error propagation, whichisalso caled
the generalized deltarule. Theruleisbased on theidea of
continuously modifying the strengths of the input
connections to reduce the difference (the delta) between
the desired (target) output, and the actual output. Other
variations of this rule include gradient descent with
momentum, gradient descent with adaptivelearning rate,
quasi-Newton, conjugate gradient, Scaled conjugate
gradient and Levenberg-Marquardt. Standard batch
backpropagation is the most popular training method of
all, butitisslow, unreliable, and requiresthe tuning of the
learning rate, which can be atedious process. L evenberg-
Marquardt isvery fast and reliablefor small least-squares
networks, Quasi-Newton techniquesare good for medium-
sized networks while conjugate gradient techniques are
good for large networks, see Bishop (1995) for discussion
of thelearning rules.

Selection of Networ k Architecture

The two main problems in network specification are;
selection/determination of input variables/lags and
determination number of units/neuronsin the hidden layer.
Problems, which can occur due to poor selection of the
parameters, include: increased input dimensionality,
increased computational complexity and memory
requirements, increased learning difficult, mis-
convergence and poor model accuracy. Thereis also the
problem of understanding results from complex models.

Deter mination of Input L ags

To determine which lags to include in an input set X of
variables, autocorrelations and partial autocorrelations
analysis together with AIC and its variation have been
used, but they have not been very helpful. Network
pruning, which involves removing small magnitude
weights, hasbeen developed, (Hassibi & Stork, 1993). A
large network is sequentially reduced by removing some
network connections (number of hidden units) on the bases
of elements of the inverse of ‘Hessian’ matrix, Bishop
(1995). Theproblemisthedifficulty involved in computing
the elements of a Hessian matrix, which are the second
derivativesof theerror function with respect to thetraining
weights.

MacKay,(1992) and Nesal,(1996) devel oped input selection
method referred to automatic relevance determination
(ARD) model based on regression problem with many
input variables. This method defines a prior over the
regression parameters that embody the concept of
uncertain relevance, so that the model is effectively able
to infer which variables are relevant and then switch the
others off thus preventing those inputs from causing
significant overfitting. Thisisachieved by looking at the
distribution of the synaptic weights, which connect one
input unit to all of the unitsinthe next layer. The variance
of this distribution can give an idea about size of the
weights controlled by each one of theinput units, namely:

e A small variance suggests that the weights are quite
closeto 0 thusthe input controlling those weightsis
not very relevant.

. Conversely alargevarianceistypical of distribution
of weights, which are connected to arelevant input.

The variance of the distribution of weights is controlled
through a hyper parameter a, where a is inversely
proportional to the square root of the actual variance. A
small value of a indicatesthat the variance of the weights
is large and thus the associated variable/lag is relevant.
Computation of a involves eval uating the eigenval ues of
the ‘Hessian’ matrix, which is not easy. Bishop (1995)
however notes that this may be avoided if al the weight
parametersare ‘' well determined’” which can only bethe
caseif N >> N, .

Thismethod may be applied to any univariatetime series
problemif an autoregressive neural network (ARNN) isto
befitted to the data. In such acase, lagged inputs of order
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p aretreated as variables among which there maybe some
irrelevant variables (lags) to the prediction of the output
variable.

Automatic Relevance Deter mation M ethod: Proposed
Rule

Suppose the Neural Network isfed with thefirst p input
lags, ignoring the biases which are generally constant
terms, the 1" input lag influences the output through the
weightsw, , h=1, 2, 3......N, linking it with the hidden
neuronsand w, indirectly linking it with the output. The
total influence on output due to this input which we

denote by inf(l) is

Nh
inf (1) = ZWmWho

Assuming that the network has converged to aloca minima
with the correct number of hidden units, the relevance of
X,, inpredicting the output x,, . is given by r(l) = [inf(l)|.
A small value of r(l) indicates that the input lag is not
relevant to the model. The rule may be summarized as
follows;

(10)

1. Determine the number of hidden neurons, N, using
the existing methods

2. Choosethefirst plagsastheinput set wherepisthe
largest lag that we suspect to be having an influence
on the predicted value x, .

3. Train the network in the usual way using al the
selected lags until some stopping criterion issatisfied.
(Convergence is necessary).

4.  Computethe (1 x p) matrix of influence measuresas
Inf=w,x w,.

Choose k, a pre-set threshold for selection of input
variables into the input set X then

a if |rd)>k
P(x(t-1)OX)E | ()| =
%} it |r()| <k
(11
where r(l) is the absolute value of the I element of the
influence matrix I nf or

5.  Sort therelevance statistics in descending order and
select thefirst N,

6. Dropal thedelays, which do not meet the criteriaand
proceed with the selected lags.

Thismethod maybe viewed asanimprovement of Mackay's
ARD method discussed in the previous section in which
the distribution of weights associated with acertainlagis
assumed to be Gausian with mean 0 and constant variance.
While Mackay’s method uses the whole set of synaptic
weights, the proposed rule uses a sub set of the weights,
Bishop (1995) with aclear cut method of selecting the set
to ensure that the effects of aparticular input lag are well
represented. This method is computationally fast, as it
requires no evaluation of eigen values of the Hessian
matrix, which isnot easy.

DETERMINATIONOF THENUMBER OF NEURONSIN
THEHIDDENLAYER

Selecting a small number of hidden units leads to poor
approximation of the true data generating process. Onthe
other hand a large number of hidden units may lead to
over fitting (poor generalization). The number of neurons
inthe hidden layer istherefore aconcernin the application
of neural networksto time seriesforecasting. Hidden units
selection can be based on the nonlinearity test (TLG)
proposed by Tersvirtaet al,(1993) or aternatively on the
test proposed by White (1989). Both are Lagrange
Multiplier (LM) type statistics). It iseven possibleto use
BICand AIC,(Stone,1977).

Baum and Haussler (1989) used what is referred to as
Vapnik-Chervonenkis dimension to show that if N, isthe
number of patterns in a network with binary inputs and

wewishto correctly classify (1— &/ 2)%(& < 0.125) of
the patterns, then

N, <(N,/¢€)log,(N, /&) (12)
whereN, isthetotal number of weights(including biases)

in the network. To classify correctly afraction 1— g € of

new patterns drawn from the same distribution, they were
abletoshowthatN > N, /¢ for alargetwo-layer network.
Since for such a network N, = (N, + 2)N, + 1 we can
substitute N and solve for N, to get an approximate rule
of thumb given by

N <£(Nt—1)
"TON +2

Another suggested ruleisto train anetwork successfully
with one hidden neuron then two and so on as one
monitors the error for the validation data set. This error
decreases with every increment in N, until overfitting
begins. At this point training is stopped and this N, is
taken to be the best choice. This latter rule and

(13)
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Baum-Haussler’s rule (though not developed for
continuous data) were used in this study.

APPLICATIONTOTIME SERIESDATA

Three data setswere used for the empirical study namely:

e The "Airline’ data (N=144): Monthly totals in
thousands of international airline passengers from

Jan. 1949to Dec. 1960 from Box & Jenkins (1976).
e The ‘Tourist’ data (N=156): Monthly totals in

thousands of world touristsvisiting Kenyafrom Jan.
1971 to Dec.1983 from Kenya Bureau of statistics:
statistical abstracts.

e The ‘Nottem’ data (N=240): Mean monthly air
temperature at Nottingham Castle from Jan 1920 to
Dec. 1939 available at http://
www.personal .buseco.monash.edu.au/~hyndman/
TSDL/.

Timeplotsinfigure 2 clearly show that the three data sets
have different properties with Airline data showing
nonlinearity (multiplicative seasonality) and trend, Nottem
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o

L5}
T

- ,-_/'”\v—/"f\xnf

P P i

Mumberf/alue
ST
T

L]

w N

~ Jﬂ\‘v f/\ \, J/\VJ’\ \J :

|
a 50

-
=

Mean monthty Mottingham temparature

|
100 150

o
=]
T

I\

Mean Temparature
= (4]
] [

%
[

ATRY \/\\ﬂ,} ﬂk \ﬂwb \

100

| U | ,M&/\ I % f[m

World Tourists visiting Kenya forecasts in thousands

150 200 250

h
o

Y
o]

Numberf\alue
o] L]
(=] L]

jM \ M\ L\f}’

_a
[}
==

| |
\[\f{\ N \N \[W \NWL\MJH\MJ N

100 120 140 160

Time/Period

Fig. 2: Time plots for the raw data sets

AJST, \ol. 5, No. 2: December, 2004

46



Seasonal Time Series Forecasting: A Comparative Study of Arimaand Ann Models

data is dominated by additive seasonal patterns while
Tourists data appears to have seasonal patterns and
somehow quadratic trend.

ARIMA Results: For each data set a Seasonal ARIMA
model wasfitted to thefirst N-12 values after appropriate
transformation of the raw data. The best model wasfound
by inspecting the AIC, the AICc and the BIC for the
minimum and theresultsare given intable 1 of appendix.
Residualsanalysisfor normality and test for significantly
correlated lags using Box-Ljung statistics (Qc ) was done
and theresults are shown inin table 2 of appendix 1.

Neural Networ ks Results: Each of the three data setsis
first scaled by dividing each value by the maximum value
withinit to ensurethat theinputslieintheinterval [0, 1].
TheTimelagged multilayered feedforward Neural Network
(TLNN) with one hidden layer and biasin both layerswas
used. The last 12 values were dropped (Forecasting
targets) and the rest N -12 were used for training (N,
values) and validation (N, values) such that N,+N, =N -
12 with N, taking at least two thirds of N - 12.

Backpropagation with Levenberg-Marquardt optimization,
hyperbolic tangent activation function neuronsat the first
layer and alinear transfer function on the output neuron
were used. Thetraining was done until mean squared error
(M SE) reached constant values as asign of convergence.
The validation error was also monitored for the selected
lagsto ensurethat the AIC Al Cc and BIC were minimum,
see table 3 for Network model selection statistics. The
proposed ARD rulewasempiricaly verified and theresults
compared with those obtained using Mackay’srule. Both
rules picked the similar lags for each of the three data
sets, see table 4 (appendix) for Airline data's ARD
statistics, ARD statisticsfor the other data sets can easily

be verified. In the table 3, the notation ARNN (2, 13; 1)
means that the best lags for 12 steps ahead forecasting
(equation/model 8) were 2 and 13 in network with 1 output
neuron.

Table 3: Neural Network model selection statistics

DATA JAIC AlCc _|BIC Model

Airline |-788.22 |-788.63 |-770.81 |ARNN(0,12;1)
(-684.57) |(-684.04) |(-665.63)

Tourist |-538.31 |-537.31 |-511.8  |ARNN(O,1,8,12;1)
(-696.84) |(-695.84) |(-669.66)

Nottem |-1303.3 |-1303 _ |-1281.8 |ARNN(L,12;1)
(-1329.7) |(-1329.4) |(-1307.8)

KEY: Training statistics (validation statistics)

Table 4: ARD statistics for Airline data

When s = 1 in model 7 and 8 we got one-step ahead

Lag o r(l) Lag o r(l)
1 2.681 0.8266 12 17 0.6683
2 262.898 | 0.0722 13 94 0.0728
3 344.274 | 0.0612 14 130.2 0.0664
4 144.226 | 0.1051 15 2740.1 0.005
5 76.77 0.1489 16 21715 | 0.0064
6 64.744 | 0.1627 17 119.9 0.0668
7 82.167 | 0.1423 18 24.1 0.1726
8 71.221 | 0.1548 19 74.2 0.0834
9 220.799 | 0.0796 20 66.3 0.0949
10 | 396.664 | 0.0529 21 795.9 0.0112
11 | 102.983 | 0.1247 22 63.4 0.0974
12 1.956 0.9594 23 39.6 0.1223
13 2.925 0.7866 24 2.8 0.5164

Table 1: SARIMA model selection statistics

DATA Transformation [AIC AlCc |[BIC Model
Airline  |Natural log. -443.25| -443.16| -43549|ARIMA (0, 1, 1)(0, 1, )12
Tourist Divideby range | -194.2| -194.11| -186.26|ARIMA (0,1, 1)(0, 1, 1) 12
Nottem None 870.7| 8709 888.4|ARIMA (1,0,0)(2, 1) 12
Dataset |df 1 2 3 4 5 6 7 8
Airline |p-value | 0.0558| 0.0951| 0.159| 0.224| 0.335] 0435/ 0.409| 0510
Qc 3657 4705 5182| 5684 5719 5.899| 7.194( 7.250
Tourist |p-value [ 0.0515] 0.015( 0.031] 0.0448| 0.0825( 0.126| 0.155( 0.148
Qc 3793| 8404 8872| 9.752| 9.754| 9.977] 10.636( 12.071]
Nottem ([p-value | 0.195 0.38| 0582 0.642| 0.764| 0589 0.628| 0.667
Qc 1683| 1938 1.954| 2515 2584| 4.656( 5.264| 5.821
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prediction model with which Faraway and Chatfield
produced forecasts. The two ARD rules picked X, , X ,,
and x , as the best input variables for such amodel and
withs=12therulepicksx ,,, X ,, asbest predictors of x
whichisequivalenttox, , x ,, aspredictorsof x, ,, , that
leads to ARNN(O, 12; 1). The optimal models were then
used to forecast the last 12 valuesin the original data sets

using model 8, seeresultsintable5 and 6.

Comparison Statistics. After retransformation of the

Table 5: Forecasts for Airline data

period [ARIMA |ANN ANN  [Actual air
(F&C)

1| 432.6 401.4] 399.7 417
2 411 381 380.4 391
3| 4879 44321 438.4 419
4 4759 431.3] 437.4 461
5| 504.7 45421 465.3 472
6| 567.2 515.4] 5185 535
7] 658.6 590| 588.9 622
8| 671.8 602.6] 605.6 606
9] 556.4| 499.3| 4933 508
10( 489.1 443 441.1 461
11 435 393.9] 399.5 390
12| 486.7 43491 446.7 432

Key: F & C used to stand for Faraway and Chatfield

Table 6: Forecasts for Tourist and Nottem data

Period |Arima. T |ANN.T |Actual.T |[Arima.|ANN. |Actual.
Nott Nott |Nott
1 46.2 33 39.3( 40.31| 421 394
2 45.1 32.79 34.9] 40.89| 41.2 40.9
3 37.9] 30.14 35.7] 39.31| 424 42.4
4 35.4] 26.54 24.11 46.83| 46.6 47.8
5 33.6] 24.08 19.6] 53.52| 52.4 52.4
6 32.4]1 24.97 214 58.26 59 58
7 46.3] 31.56 32.2( 60.76 59.6 60.7
8 33.7| 28.36 25.9] 61.03] 60.4 61.8
9 35.3] 28.44 27.5| 57.37 57 58.2
10 42.7 30 32.4] 51.84| 50.7 46.7
11 39.6] 30.62 33.8( 42.05( 47.8 46.6
12 47.9] 33.06 48.6] 39.14| 39.2 37.8

variables to the original scale, the forecast “ X, of
X ,; made at timet was used to computethe error E, dueto

this forecast given by E; =X, —X. . To compare the
forecasting ability of different method/models one could

SE =gt 2
use Mean Square Error M =S Z Ei . Mean
1

-1
Absolute Percentage Error, S Z|E, /% X 1000 /0% as
1

suggested by Wei (1990). The Mean Euclidean Distance

MED:S&,/Z E’ as proximity dissimilarity
|

measures and Product Moment Correlation Coefficient
(PMC) asaproximity similarity measure may also be used.
We chose to use MED, MAD and PMC and the results
are shown in table 7. These statistics and the forecasts
(plotted in figure 3) show that ANN out-performed
ARIMA model in two cases (Airline and Tourist data)
while in the case of Nottem data the statistics are not
significantly different. From thetime plots, we noted that
Airline and Tourist data sets are not apparently linear
while Nottem dataisclearly linear with dominant regular
seasonal patterns. We may therefore infer that NN are
better forecasters than ARIMA models especially with
economic data, which naturally exhibits non-linear
properties. Asnoted by Faraway and Chatfield, care must
be taken in model specification. Although the approach
used isdifferent, theresultsare almost similar in the case
of Airlinedata.

Table 7: Models comparison statistics

Data set Model MED |MAD |PMC
Nott ARNN 0.6608| 1.5876( 0.963
ARIMA 0.4847| 1.2917( 0.984
Airline ARNN 5.2481| 15.484| 0.981
F & C(NN) 5.06| 15.583| 0.97
ARIMA 12.253| 38.667| 0.977
Tourist ARNN 1.621| 4.134| 0.906
ARIMA 2.716] 8.508( 0.854
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Fig. 3: Twelve (12) steps ahead forecasts
CONCLUSION The main problems with ANN seem to be their lack of

In this paper we have tried to offer an empirical
comparative evaluation of the performance of ANN to the
problem of univariate time seriesforecasting. Most of the
recent literature has focused on comparing ANN and
ARIMA models and the results have been conflicting.
Our results show that the ANN are relatively better than
ARIMA models in forecasting ability but the nature of
the datamay influence the results. More research need to
be done on the same perhaps with linear or non-linear
seriesand/or shorter or longer seriesin order to generalize
the results.

We have shown that instead of modeling using recursive
estimation, which introduces recursion errors to
successive forecasts, the relationship between x and X, .
may be modeled and the s steps ahead forecast generated
all at once.

explanation capabilities and of a proper building
methodol ogy to define the network architecture. Most of
the ANN modeling processisbasically empirical and we
have proposed an easier ARD rule, which seems to be
working well empirically. This rule may be investigated
further and perhaps a theory developed to be included in
Time Series modeling methodology for Artificial Neural
Networks.
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