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ABSTRACT:- This paper addresses the concerns of Faraway and Chatfield (1998) who questioned
the forecasting ability of Artificial Neural Networks (ANN). In particular the paper compares the
performance of Artificial Neural Networks (ANN) and ARIMA models in forecasting of seasonal
(monthly) Time series. Using the Airline data which Faraway and Chatfield (1998) used and two
other data sets and taking into consideration their suggestions, we show that ANN are not as bad as
Faraway and Chatfield put it. A rule of selecting input lags into the input set based on their relevance/
contribution to the model is also proposed.
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INTRODUCTION

Time series forecasting is a common problem. Many
approaches to this problem have been used with Box and
Jenkins (1976) developing the integrated autoregressive
moving average (ARIMA) methodology for fitting a class
of linear time series models. Statisticians in a number of
ways have addressed the restriction of linearity in the
Box-Jenkins approach and robust versions of various
ARIMA models have been developed in addition to
nonlinear time series models. More recently, Artificial
Neural Networks (ANN) have been studied as an
alternative to these nonlinear model-driven approaches.
Because of their characteristics, ANN belong to the
data-driven approach, where the analysis depends on the
available data. In the recent past many statisticians have
investigated the properties of neural networks and have
found considerable overlap between statistical and neural
network modelling, see for example Bishop (1995).
ANN have been used for a wide variety of applications,
where statistical methods are traditionally employed. In
time series applications they have been used in forecasting
future values. Several authors have done comparison
studies between statistical methods and ANN (see e.g.
Titterington, 1999). In time series context Hill et al. (1996),

Kuan and White (1994), among others have investigated
the forecasting ability of ANN but Faraway and Chatfield
(1998) reviewed their work and questioned their findings.
This paper seeks to address the issues raised by those
who do not embrace ANN models as an alternative for
statistical modeling. In particular we focus on Faraway
and Chatfield (1998) work and try to empirically dispel
their fears on forecasting ability of ANN.

The statistical approach to forecasting involves the
construction of stochastic models to predict the value of
an observation xt+d using previous observations. This is
often accomplished using linear stochastic difference
equation models, with random input. The most important
class of such models is the linear autoregressive integrated
moving average (ARIMA) model. Before we present our
results, we give a brief review of ARIMA and ANN
techniques respectively and optimal prediction from the
models.
 
ARIMA MODELLING

Let xt : t = 0, 1, 2, .......N  be an observed monthly time
series. If this time series contains seasonality, a seasonal
periodic component repeats itself after every s = 12
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observations and thus we expect xt to depend on terms
such as xt-12 and perhaps xt-24 as well as terms such as xt-1 ,
xt-2 , ..... Box and Jenkins (1976) have generalized the
ARIMA model to deal with seasonality, thus coming up
with a model known as SARIMA (seasonal autoregressive
integrated moving average) written as ARIMA (p, d, q)(P,
D,Q)s and given by

( ) ( ( ) ( )s
p p t Q tB w q B B eφ θΦ = Θ  (1)

where , , ,p p Qqφ θΦ Θ are polynomials of order p, P, q, Q

respectively, .d d d
s tx∇ ∇ ∇ is the simple differencing

operator of order d, D∇  is the seasonal differencing

operator of order  i
t t iD B x x −=   is the backward shift

operator and s.is the seasonal period.
 
The determination of the ARIMA model orders involves
matching the patterns in the sample autocorrelation
functions (ACF) and sample partial autocorrelation
functions (PACF) with the theoretical patterns of the
known models to identify the orders. Akaike Information
Criterion (AIC), [Akaike (1974)] has also been widely used
which can be used for statistical model identification in a
wide range of situations and is not restricted to time series.
The optimal order of the model is chosen by the number of
model parameters, Np , a function of p and q, which
minimizes AIC(Np ). The performance of AIC has been
criticized especially when Np is large and a recent
modification of AIC by Hurvich and Tsai (1989) adds a
bias adjustment which leads to a criterion denoted by AICc
and given by;
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Burnham and Anderson (1998) insist on the use of AICc
irrespective of the size of the data while Faraway and
Chatfield (1998) recommends the use of Bayesian
Information Criterion (BIC) because it penalises extra
parameters just like AICc.The BIC is defined by;

2ˆ( ) log( )p e p pBIC N N n N N Nσ= + +! (3)

Once the form of the model has been specified its
parameters are then estimated using maximum likelihood
estimation method or any other convenient one. The basic
assumption in ARIMA models is that the errors are
uncorrelated random variables with mean zero and constant
variance. It is therefore expected that the residuals have
the characteristics of the white noise. Chatfield (1975),
Abraham and Ledolter (1983) have suggested that we
‘’Just’’ look at the first few values of autocorrelations, rk

(for residuals) particularly at lags 1, 2 and the first seasonal
lag (if any) and see if they are significantly different from
zero (i.e whether they fall outside the limits ±. If only one
(or two) values of estimated rk are significant at lags which
have no obvious physical meaning there would be no
enough evidence to reject the model. A more
comprehensive treatment of linear ARIMA-models may
be found in Box and Jenkins (1976). Box-Pierce (1970)
came up with a test for serially correlated residuals in
ARMA (p,q). The test has been extended to cover
seasonal models, Chatfield (1975). It has been shown that
if the appropriate model for the differenced series is
ARIMA (p, d, q)(P, D,Q)s process then the statistic
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If the calculated Q statistic exceeds the tabulated

2

,( )m p q P Qαχ − − − −
 , then the adequacy of the fitted model

would be questioned. It is however advisable to combine
several methods in diagnostic checking. Finally and once
the model has been found adequate, prediction /
forecasting of future values is done.
 
ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is, basically, a
non-parametric attempt to model the human brain. ANN
acts like a human brain, trying to recognize regularities
and patterns in the data. They can learn from experience
and generalize based on their previous knowledge.
Although biologically inspired, ANN has found
applications in many different fields, especially for
forecasting and classification purposes. The topology
of ANN has been sketched in Fig. 1.

In figure 1, various inputs to the network are represented
by the mathematical symbol, xi ; each of these n inputs is
multiplied by a connection weight wih depending on the
hidden neuron it is connected to. In the simplest case,
these products are simply summed, fed through a transfer
function to generate a result and then output y.
 
Even though all artificial neural networks are constructed
from this basic building block the fundamentals may vary
in these building blocks and there are differences. The
processing elements are able to ‘’learn’’ by receiving
weighted inputs that, with adjustment, time, and
repetition, can be made to produce appropriate outputs.
A multi layer feedforward network with at least one hidden
layer and a sufficient number of hidden units/neurons is
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capable of approximating any Borel-measurable function,
Hornik et al (1989), and therefore ANN is powerful enough
to represent any form of time series.

 
TIME LAGGED NEURAL NETWORKS
 
Time lagged Neural Networks (TLNN) is network in which
temporal dependence in time series data is captured by
supplying the network with present value of the input, xt
in addition to p past values of the input xt-1 , xt-2 , ...xt-p . The
relationship between output yt and the input is assumed
to be of the form

 = (  ,  -1,  - 2,... - )  yt f xt xt xt xt p et+ (5)
where et is a zero mean Gaussian variable with variance

2
eσ and f(.) is a non-linear function in its arguments.

We may view this as a non-linear autoregressive
process. In neural network context we write ARNN to
mean Autoregressive Neural Network.
 
Let s be the seasonal period and assume that the series
one season in the past contains enough information about
the patterns in the time series data. Since data is available
up to time t the input window is shifted to start at s steps
below this time. The network is then trained with inputs
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Figure 1: Topology of Artificial Neural Network

xt-s , xt-(1+s) , xt-(2+s) , ...., xt-(p+s) ,s > 0 which we denote by the
vector x t  and desired or target variable xt in an
autoregressive model. Upon convergence, the network is
fed with xt , xt-1 , xt-2 , ...xt-p , so as to output xt+s an s steps
ahead forecast of xt. Assuming that the output neuron is
linear, the NN output of the kth hidden neuron is given by

ˆ ( )
p

k lk t l k
l s

x t w x bφ −
=

 
= + 

 
∑ (6)

where φ (.) is the activation function of the neuron k and
wlk are its connection weights, [Cichocki and Unbehauen
(1993), Faraway and Chatfield (1998)]. Some of the
commonly used activation functions are the linear
function, where k is a real-valued constant, the logistic

function ( )
1

z

z
ez

e
φ =

+
and the hyperbolic tangent

function . For s steps ahead forecasting, the training phase
model is given by

1
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where Nh is the number of neurons in the hidden layer
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with connection weights who to the output neuron, which
has a bias bo . The forecasting model is given by

1 0

ˆ
hN p s

t s ho lh t l h o
h l

x w w x b bφ
−

+ −
= =

 
= + + 

 
∑ ∑ (8)

The parameter space includes the vector of biases, the
matrix w1 = ((wlh)) of weights connecting the inputs with
the hidden neurons and the matrix w2 = ((who)) of weights
linking the hidden neurons to the output neuron. To

estimate 1 2( , , )b w wψ = , nonlinear least squares
procedures are used to minimize

2 2

1 1

ˆ( ) ( )
h hN N

t t t
t t
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The optimization techniques for minimizing the error
function 9 are referred to as learning rules. The best-known
learning rule is the error backpropagation, (Rumelhart et
al., 1986) or back error propagation, which is also called
the generalized delta rule. The rule is based on the idea of
continuously modifying the strengths of the input
connections to reduce the difference (the delta) between
the desired (target) output, and the actual output. Other
variations of this rule include gradient descent with
momentum, gradient descent with adaptive learning rate,
quasi-Newton, conjugate gradient, Scaled conjugate
gradient and Levenberg-Marquardt. Standard batch
backpropagation is the most popular training method of
all, but it is slow, unreliable, and requires the tuning of the
learning rate, which can be a tedious process. Levenberg-
Marquardt is very fast and reliable for small least-squares
networks, Quasi-Newton techniques are good for medium-
sized networks while conjugate gradient techniques are
good for large networks, see Bishop (1995) for discussion
of the learning rules.
 
Selection of Network Architecture

The two main problems in network specification are;
selection/determination of input variables/lags and
determination number of units/neurons in the hidden layer.
Problems, which can occur due to poor selection of the
parameters, include: increased input dimensionality,
increased computational complexity and memory
requirements, increased learning difficult, mis-
convergence and poor model accuracy. There is also the
problem of understanding results from complex models.

 

Determination of Input Lags

To determine which lags to include in an input set X of
variables, autocorrelations and partial autocorrelations
analysis together with AIC and its variation have been
used, but they have not been very helpful. Network
pruning, which involves removing small magnitude
weights, has been developed, (Hassibi & Stork, 1993).  A
large network is sequentially reduced by removing some
network connections (number of hidden units) on the bases
of elements of the inverse of ‘Hessian’ matrix, Bishop
(1995). The problem is the difficulty involved in computing
the elements of a Hessian matrix, which are the second
derivatives of the error function with respect to the training
weights.
 
MacKay,(1992) and Neal,(1996) developed input selection
method referred to automatic relevance determination
(ARD) model based on regression problem with many
input variables. This method defines a prior over the
regression parameters that embody the concept of
uncertain relevance, so that the model is effectively able
to infer which variables are relevant and then switch the
others off thus preventing those inputs from causing
significant overfitting. This is achieved by looking at the
distribution of the synaptic weights, which connect one
input unit to all of the units in the next layer. The variance
of this distribution can give an idea about size of the
weights controlled by each one of the input units, namely:

• A small variance suggests that the weights are quite
close to 0 thus the input controlling those weights is
not very relevant.

• Conversely a large variance is typical of distribution
of weights, which are connected to a relevant input.

 
The variance of the distribution of weights is controlled
through a hyper parameter α , where α  is inversely
proportional to the square root of the actual variance. A
small value of α indicates that the variance of the weights
is large and thus the associated variable/lag is relevant.
Computation of α involves evaluating the eigenvalues of
the ‘Hessian’ matrix, which is not easy. Bishop (1995)
however notes that this may be avoided if all the weight
parameters are ‘’well determined’’ which can only be the
case if Nt >> Nh .
 
This method may be applied to any univariate time series
problem if an autoregressive neural network (ARNN) is to
be fitted to the data. In such a case, lagged inputs of order
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p are treated as variables among which there maybe some
irrelevant variables (lags) to the prediction of the output
variable.

Automatic Relevance Determation Method: Proposed
Rule 

Suppose the Neural Network is fed with the first p input
lags, ignoring the biases which are generally constant
terms, the lth input lag influences the output through the
weights wlh , h = 1, 2, 3......Nh linking it with the hidden
neurons and who indirectly linking it with the output. The
total influence on output due to this input which we
denote by inf(l) is

1

( )
hN

lh ho
h

inf l w w
=

= ∑              (10)

Assuming that the network has converged to a local minima
with the correct number of hidden units, the relevance of
xt-l  in predicting the output xt+s is given by r(l) = |inf(l)|.
A small value of r(l) indicates that the input lag is not
relevant to the model. The rule may be summarized as
follows;

1.      Determine the number of hidden neurons, Nh using
the existing methods

2.      Choose the first p lags as the input set where p is the
largest lag that we suspect to be having an influence
on the predicted value xt+s .

3.      Train the network in the usual way using all the
selected lags until some stopping criterion is satisfied.
(Convergence is necessary).

4.      Compute the (1 x p) matrix of influence measures as
Inf = w2 x  w 1 .

Choose k, a pre-set threshold for selection of input
variables into the input set X then

1 ( )
( ( ) ) 1, 2,3.............

0 ( )

if r l k
P x t l X l p

if r l k

>
− ∈ = =

≤




             (11)
where r(l) is the absolute value of the lth element of the
influence matrix Inf or

5.      Sort the relevance statistics in descending order and
select the first Nl.

6.      Drop all the delays, which do not meet the criteria and
proceed with the selected lags.

 
This method maybe viewed as an improvement of Mackay’s
ARD method discussed in the previous section in which
the distribution of weights associated with a certain lag is
assumed to be Gausian with mean 0 and constant variance.
While Mackay’s method uses the whole set of synaptic
weights, the proposed rule uses a sub set of the weights,
Bishop (1995) with a clear cut method of selecting the set
to ensure that the effects of a particular input lag are well
represented. This method is computationally fast, as it
requires no evaluation of eigen values of the Hessian
matrix, which is not easy.
 
DETERMINATION OF THE NUMBER OF NEURONS IN
THE HIDDEN LAYER

Selecting a small number of hidden units leads to poor
approximation of the true data generating process. On the
other hand a large number of hidden units may lead to
over fitting (poor generalization). The number of neurons
in the hidden layer is therefore a concern in the application
of neural networks to time series forecasting. Hidden units
selection can be based on the nonlinearity test (TLG)
proposed by Tersvirta et al,(1993) or alternatively on the
test proposed by White (1989). Both are Lagrange
Multiplier (LM) type statistics). It is even possible to use
BIC and AIC,(Stone,1977).
 
Baum and Haussler (1989) used what is referred to as
Vapnik-Chervonenkis dimension to show that if Nt is the
number of patterns in a network with binary inputs and
we wish to correctly classify (1 / 2)%( 0.125)ε ε− ≤ of
the patterns, then

2( / ) log ( / )t w hN N Nε ε≤              (12)
where Nw is the total number of weights(including biases)
in the network. To classify correctly a fraction 1 ε− ε  of
new patterns drawn from the same distribution, they were
able to show that Nt ≥  Nw /ε  for a large two-layer network.
Since for such a network Nw = (Nl + 2)Nh + 1 we can
substitute Nw and solve for Nh to get an approximate rule
of thumb given by

( 1)
2

t
h

l

NN
N

ε −≤
+              (13)

Another suggested rule is to train a network successfully
with one hidden neuron then two and so on as one
monitors the error for the validation data set. This error
decreases with every increment in Nh until overfitting
begins. At this point training is stopped and this Nh is
taken to be the best choice. This latter rule and
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Baum-Haussler’s rule (though not developed for
continuous data) were used in this study.
 
APPLICATION TO TIME SERIES DATA

Three data sets were used for the empirical study namely:

• The ‘Airline’ data (N=144): Monthly totals in
thousands of international airline passengers from
Jan. 1949 to Dec. 1960 from Box & Jenkins (1976).

• The ‘Tourist’ data (N=156): Monthly totals in

thousands of world tourists visiting Kenya from Jan.
1971 to Dec.1983 from Kenya Bureau of statistics:
statistical abstracts.

• The ‘Nottem’ data (N=240): Mean monthly air
temperature at Nottingham Castle from Jan 1920 to
Dec. 1939 available at http://
www.personal.buseco.monash.edu.au/~hyndman/
TSDL/.

Time plots in figure 2 clearly show that the three data sets
have different properties with Airline data showing
nonlinearity (multiplicative seasonality) and trend, Nottem

Fig. 2: Time plots for the raw data sets
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data is dominated by additive seasonal patterns while
Tourists data appears to have seasonal patterns and
somehow quadratic trend.

ARIMA Results: For each data set a Seasonal ARIMA
model was fitted to the first N-12 values after appropriate
transformation of the raw data. The best model was found
by inspecting the AIC, the AICc and the BIC for the
minimum and the results are given in table 1 of appendix.
Residuals analysis for normality and test for significantly
correlated lags using Box-Ljung statistics (Qc ) was done
and the results are shown in in table 2 of appendix 1.

Neural Networks Results: Each of the three data sets is
first scaled by dividing each value by the maximum value
within it to ensure that the inputs lie in the interval [0, 1].
The Time lagged multilayered feedforward Neural Network
(TLNN) with one hidden layer and bias in both layers was
used. The last 12 values were dropped (Forecasting
targets) and the rest N -12 were used for training (Nt
values) and validation (Nv values) such that Nt +Nv =N -
12 with Nt taking at least two thirds of N - 12.
 
Backpropagation with Levenberg-Marquardt optimization,
hyperbolic tangent activation function neurons at the first
layer and a linear transfer function on the output neuron
were used. The training was done until mean squared error
(MSE) reached constant values as a sign of convergence.
The validation error was also monitored for the selected
lags to ensure that the AIC AICc and BIC were minimum,
see table 3 for Network model selection statistics. The
proposed ARD rule was empirically verified and the results
compared with those obtained using Mackay’s rule. Both
rules picked the similar lags for each of the three data
sets, see table 4 (appendix) for Airline data’s ARD
statistics, ARD statistics for the other data sets can easily

be verified. In the table 3, the notation ARNN (2, 13; 1)
means that the best lags for 12 steps ahead forecasting
(equation/model 8) were 2 and 13 in network with 1 output
neuron.

Table 3: Neural Network model selection statistics

DATA AIC AICc BIC Model
-788.22 -788.63 -770.81

(-684.57) (-684.04) (-665.63)

-538.31 -537.31 -511.8

(-696.84) (-695.84) (-669.66)
-1303.3 -1303 -1281.8
(-1329.7) (-1329.4) (-1307.8)

Nottem ARNN(1,12;1)

Airline ARNN(0,12;1)

Tourist ARNN(0,1,8,12;1)

KEY: Training statistics (validation statistics)

Table 4: ARD statistics for Airline data

When s = 1 in model 7 and 8 we got one-step ahead

Table 1: SARIMA model selection statistics

DATA Transformation AIC AICc BIC Model
Airline Natural log. -443.25 -443.16 -435.49 ARIMA (0, 1, 1)(0, 1, 1)12

Tourist Divide by range -194.2 -194.11 -186.26 ARIMA (0, 1, 1)(0, 1, 1) 12

Nottem None 870.7 870.9 888.4 ARIMA (1, 0, 0)(2, 1,) 12

Data set df 1 2 3 4 5 6 7 8
Airline p-value 0.0558 0.0951 0.159 0.224 0.335 0.435 0.409 0.510

Qc 3.657 4.705 5.182 5.684 5.719 5.899 7.194 7.250
Tourist p-value 0.0515 0.015 0.031 0.0448 0.0825 0.126 0.155 0.148

Qc 3.793 8.404 8.872 9.752 9.754 9.977 10.636 12.071
Nottem p-value 0.195 0.38 0.582 0.642 0.764 0.589 0.628 0.667

Qc 1.683 1.938 1.954 2.515 2.584 4.656 5.264 5.821

Lag α r(l) Lag α r(l)
1 2.681 0.8266 12 1.7 0.6683

2 262.898 0.0722 13 94 0.0728

3 344.274 0.0612 14 130.2 0.0664

4 144.226 0.1051 15 2740.1 0.005

5 76.77 0.1489 16 2171.5 0.0064
6 64.744 0.1627 17 119.9 0.0668

7 82.167 0.1423 18 24.1 0.1726

8 71.221 0.1548 19 74.2 0.0834
9 220.799 0.0796 20 66.3 0.0949

10 396.664 0.0529 21 795.9 0.0112
11 102.983 0.1247 22 63.4 0.0974
12 1.956 0.9594 23 39.6 0.1223
13 2.925 0.7866 24 2.8 0.5164
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prediction model with which Faraway and Chatfield
produced forecasts. The two ARD rules picked xt-1 , xt-12
and xt-13 as the best input variables for such a model and
with s = 12 the rule picks xt-12 , xt-24 as best predictors of xt
which is equivalent to xt , xt-12 as predictors of xt+12 , that
leads to ARNN(0, 12; 1). The optimal models were then
used to forecast the last 12 values in the original data sets
using model 8, see results in table 5 and 6.
 
Comparison Statistics: After retransformation of the

ANN
(F & C)

1 432.6 401.4 399.7 417

2 411 381 380.4 391

3 487.9 443.2 438.4 419

4 475.9 431.3 437.4 461
5 504.7 454.2 465.3 472

6 567.2 515.4 518.5 535

7 658.6 590 588.9 622
8 671.8 602.6 605.6 606
9 556.4 499.3 493.3 508

10 489.1 443 441.1 461
11 435 393.9 399.5 390
12 486.7 434.9 446.7 432

ANN Actual airperiod ARIMA

Period Arima.T ANN.T Actual.T Arima.
Nott

ANN.
Nott

Actual.
Nott

1 46.2 33 39.3 40.31 42.1 39.4

2 45.1 32.79 34.9 40.89 41.2 40.9

3 37.9 30.14 35.7 39.31 42.4 42.4

4 35.4 26.54 24.1 46.83 46.6 47.8

5 33.6 24.08 19.6 53.52 52.4 52.4
6 32.4 24.97 21.4 58.26 59 58

7 46.3 31.56 32.2 60.76 59.6 60.7

8 33.7 28.36 25.9 61.03 60.4 61.8
9 35.3 28.44 27.5 57.37 57 58.2

10 42.7 30 32.4 51.84 50.7 46.7
11 39.6 30.62 33.8 42.05 47.8 46.6
12 47.9 33.06 48.6 39.14 39.2 37.8

Table 5: Forecasts for Airline data

Key: F & C used to stand for Faraway and Chatfield

Table 6: Forecasts for Tourist and Nottem data

variables to the original scale, the forecast “ ˆt ix + of

t ix + made at time t was used to compute the error Ei due to

this forecast given by 1 ˆt i t iE x x+ += − . To compare the
forecasting ability of different method/models one could

use Mean Square Error 
1 2

i
i

MSE s E−= ∑ . Mean

Absolute Percentage Error, 
1 /   100%i t i

i
s E x x−

+∑ % as

suggested by Wei (1990). The Mean Euclidean Distance

1 2
i

i
MED s E−= ∑  as proximity dissimilarity

measures and Product Moment Correlation Coefficient
(PMC) as a proximity similarity measure may also be used.
We chose to use MED, MAD and PMC and the results
are shown in table 7. These statistics and the forecasts
(plotted in figure 3) show that ANN out-performed
ARIMA model in two cases (Airline and Tourist data)
while in the case of Nottem data the statistics are not
significantly different. From the time plots, we noted that
Airline and Tourist data sets are not apparently linear
while Nottem data is clearly linear with dominant regular
seasonal patterns. We may therefore infer that NN are
better forecasters than ARIMA models especially with
economic data, which naturally exhibits non-linear
properties. As noted by Faraway and Chatfield, care must
be taken in model specification. Although the approach
used is different, the results are almost similar in the case
of Airline data.

Table 7: Models comparison statistics

Data set Model MED MAD PMC
Nott ARNN 0.6608 1.5876 0.963

ARIMA 0.4847 1.2917 0.984

Airline ARNN 5.2481 15.484 0.981

F & C(NN) 5.06 15.583 0.97
ARIMA 12.253 38.667 0.977

Tourist ARNN 1.621 4.134 0.906
ARIMA 2.716 8.508 0.854
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Fig. 3: Twelve (12) steps ahead forecasts

CONCLUSION

In this paper we have tried to offer an empirical
comparative evaluation of the performance of ANN to the
problem of univariate time series forecasting. Most of the
recent literature has focused on comparing ANN and
ARIMA models and the results have been conflicting.
Our results show that the ANN are relatively better than
ARIMA models in forecasting ability but the nature of
the data may influence the results. More research need to
be done on the same perhaps with linear or non-linear
series and/or shorter or longer series in order to generalize
the results.
 
We have shown that instead of modeling using recursive
estimation, which introduces recursion errors to
successive forecasts, the relationship between xt and xt+s
may be modeled and the s steps ahead forecast generated
all at once.

The main problems with ANN seem to be their lack of
explanation capabilities and of a proper building
methodology to define the network architecture. Most of
the ANN modeling process is basically empirical and we
have proposed an easier ARD rule, which seems to be
working well empirically. This rule may be investigated
further and perhaps a theory developed to be included in
Time Series modeling methodology for Artificial Neural
Networks.

REFERENCES

Abraham, B and Ledolter, J. (1983). Statistical methods for
forecasting. New York: John Wiley & Sons.

Akaike, H. (1974).  A new look at the statistical model
identification.  IEEE Transactions on Automatic
Control 19, 716-723.

Bishop, C.M. (1995). Neural networks for pattern
recognition. Oxford: Oxford University press.



50AJST, Vol. 5, No. 2: December, 2004

J. M. KIHORO

Baum, E.B. and Haussler D. (1989). What size net gives
valid generalization? Neural Computation 1(1),151-
160.

Box, G. E. P and Jenkins, G. M. (1976). Time analysis,
Forecasting and Control. San Francisco, Holden –
Day.

Box,G.E.P and Pierce,D.A (1970). Distribution of the residual
autocorrelations in ARIMA time series models,
Biometrika,52,181-192.

Burnham, K. P., and Anderson, D.R. (1998). Model selection
and inference. Springer-Verlag, New York.

Chatfield, C. (1975). The analysis of Time Series. London,
Chapman and Hall.

Cichocki, A. and Unbehauen, R. (1993). Neural Networks
for Optimization and signal processing John Wiley
and Sons, New York.

Faraway J. and Chatfield C.(1998). Time series forecasting
with neural networks: A comparative study using
the airline data. Journal of applied statistics 47,231-
250.

Hassibi, B. and Stork D. G. (1993). Second order derivatives
for network pruning:Optimal brain surgeon. Advances
in Neural information processing systems 5, 164-
171. San Mateo.

Hill, T., O’connor, M. and Remus, W. (1996) . Neural
network models for time series forecasts,
Management Science, 42, 1082-1092.

Hornik, K., Stinchcombe, M. and White, H. (1989).
Multilayer Feedforward Networks are Universal
Approximators. Neural Networks, 2, 359-366.

Hurvich, C. M., and Tsai, C.L. (1989). Regression and Time
series model selection in small samples. Biometrika
76, 297-307.

Kuan, C. M. and White H. (1994). Artificial neural networks:
an econometric perspective  (with discussion).
Econometrics. Rev., 13, 1-143.J.

MacKay, D. J. C. (1992). Bayesian interpolation, Neural
Computation, vol. 4, no. 3, pp. 415-447.

Marquardt, D. (1963). An algorithm for least squares
estimation of nonlinear parameters. J. Soc. Ind. Appl.
Math. 11, 431.

Neal, R. M. (1996). Bayesian Learning for Neural Networks.
New York: Springer.

Rumelhart, D.E., Hilton, G.E. and Williams, R.J. (1986).
Learning international representations by error
propagation. Parallel Distributed Processing.  Eds.
D.E. Rumelhart and J.L. McClelland. MIT Press,
Cambridge, MA.


