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Abstract

The paper extends the work of Sarguta who derived recursive re-
lations for univariate distributions by considering the ZIP continuous
mixtures. The paper gives a recursive formular which can be used to
evaluate the mixed distributions which can be used when the probabil-
ity distribution functions cannot be evaluated explicitly. Integration by
parts is often employed when deriving the recursive formulas. From sec-
tion two up to section seven, we derived the recursive formulas for ZIP
mixture distributions using Rectangular, Exponential, Gamma with two
parameters, Poisson- Beta and Inverted - Beta as mixing distributions.

Keywords: ZIP, recursive, inflated model, prior distributions and integra-
tion

1 Introduction
A zero-inflated model is a statistical model based on a zero-inflated proba-
bility distribution. Gardner et.al in their paper, [9], suggested that using an
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inflation technique was adequate if the intention is to estimate the effect of the
covariates. In April, 2009, the University of Carlos the third team in their [10],
assessed the impacts of the fertility decisions of mothers on infant mortality.
They used a Poisson regression to model the number of children. They fitted
an inflated zero’s model with negative binomial to the fertility decisions so as
to eliminate the problem of overdispersion of the Poisson model. A main diffi-
culty with the use of Mixed Poisson distribution is that, with the exception of
a few mixing distributions, their probability mass function f(z) is difficult to
evaluate [8]. One way of circumventing this problem is to express the mixed
distributions in terms of recursive relations. A number of methods for deriving
such recursive relations have been developed, starting with the works of [5],
[4], [1], [3], etc. Integration by parts does not require assumptions given by [3]
or by [1].

2 Rectangular mixing distribution
Therefore, the mixed distribution becomes
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The recursive formula becomes
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with Pr(Y =—-1) =0

3 Poisson-Inverse Gaussian Distribution
If the Inverse Gaussian mixing distribution is given by

o <b(A u)

g<A>=<W>%exp{ JAS0,0>0,0>0

then the recursive formula for Zero Inflated Poisson-Inverse Gaussian distri-
bution becomes

Jlo+ (1= p)e (5557 exp{ =251 d), k=0;
e— A\ 1
0 [(]‘_p) k!)\ ](Qﬁd)AS)QeXp{ ¢2;\2)\N }d)\ k_1727
(

_ )t 1—/)1)(%)%6% OWA‘TSe‘A;UZ “HdN, k=0
o 5 ¢ roo _3 — P _\_ &
(1];!,0) (%)2 en fo A3 A 50) 25 4\, k=1,2,. ...

Let



852 Cynthia L. Anyango, Edgar Otumba and John M. Kihoro

Using integration by parts , let
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4 Poisson-Exponential with One parameter
If the distribution for the exponential with one parameter is given by

gA) =pe ™ X>0, >0,

then the recursive formula for the Zero Inflated Poisson-Exponential with one
parameter distribution becomes
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5 Poisson-Gamma with Two parameters
If the pdf of a Gamma distribution with two parameters is given by

g(\) = B—e_ﬁ)‘)\a_l, A>0.a>0,6>0
lNa
then the recursive formula for Zero Inflated Poisson-Gamma with two param-
eters becomes
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6 Mixing with Poisson - Beta distribution
The Poisson - Beta distribution is
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The recursive formula is derived as follows;
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This implies that
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Hence the recursive formular is
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7 Mixing with Inverted - Beta distribution
The mixing distribution is
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Therefore
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which when simplified gives the recursive formular a Zero Inflated Poisson-
Inverted Beta distribution as
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with

8 Conclusion

From the above continuous prior distributions, it can be clearly seen that the
recursive relations can be derived for numerous mixture distributions. This
is made possible by the fact that there are no restrictions imposed during in-
tegration. It is known that the distributions do not exist when the variable
k < 0. We restricted ourselves to continuous mixing distribution even though,
discrete or countable mixtures where we have discrete prior distributions could
be of interest to a researcher, thus, research can be carried out on this.
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