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Abstract—Empirical studies on software defect prediction 

models have come up with various predictors. In this study we 

examined variable regularized factors in conjunction with 

Logistic regression. Our work was built on eight public NASA 

datasets commonly used in this field. We used one of the datasets 

for our learning classification out of which we selected the 

regularization factor with the best predictor model; we then 

used the same regularization factor to classify the other seven 

datasets. Our proposed algorithm Variant Variable Regularized 

Logistic Regression (VVRLR) and modified VVRLR; were then 

used in the following metrics to measure the effectiveness of our 

predictor model: accuracy, precision, recall and F-Measure for 

each dataset. We measured above metrics using three Weka 

models, namely: BayesianLogisticRegression, NaiveBayes and 

Simple Logistic and then compared these results with VVRLR. 

VRLR and modified VVRLR outperformed the weka 

algorithms per our metric measurements. The VVRLR 

produced the best accuracy of 100.00%, and an average 

accuracy of 91.65 %; we had an individual highest precision of 

100.00%, highest individual recall of 100.00% and F-measure of 

100.00% as the overall best with an average value of 76.41% 

was recorded by VVRLR for some datasets used in our 

experiments. Our proposed modified VVRLR and variant 

VVRLR algorithms for F-measures outperformed the three 

weka algorithms.  

 

Index Terms—F-measure, precision, recall, variant variable 

regularized logistic regression.  

 

I. INTRODUCTION 

Detection of software defective modules in an early stage 

of its life cycle is very valuable and also saves cost. This can 

be appreciated in the case of telecommunication and military 

systems [1]-[3], identifying defects at a later stage may lead to 

paying an expensive price. Software usually comprises of a 

great number of impartially independent units termed 

modules which execute certain functions [4]. A software 

model can be viewed as an empirical tool using a definite 

algorithm to determine the type of modules [1].  

Diversity of software defect prediction techniques are 

available and these include, machine learning, parametric, 
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statistical and mixed model techniques[5].Current studies has 

shown that many researchers use machine learning for 

software quality prediction. Classification and clustering are 

some approaches in machine learning where classification is 

extensively used [6], [7]. 

Many researchers have proposed different defect 

predictors for classifying defective modules such as; 

discriminant analysis by [8]; Linear regression as was 

proposed by [9], and [10] worked on Naïve. 

Bayes classification, for the aforementioned predictors [10] 

in their work stated that, Naïve Bayes performance is 

significantly better than the other methods. Nonetheless our 

proposed model performed better than Naïve Bayes in 

addition to two other algorithms used in our experiments. 

Although the algorithms used differ, they all employ complex 

metrics as an input predictor, same as in our work, and a 

prediction of fault-prone or non-fault- prone as an output 

response variable and aim at reducing the cost of the 

misclassification [11].  

In this paper we applied variable regularized logistic 

regression with four regularization factors for predicting 

defective software and selected the best regularization as 

fixed regularized logistics factor for our proposed model. We 

increased the number of attributes to a polynomial of 

maximum degree of four from a public dataset; and compared 

the efficiency of VVRLR with three weka classification 

algorithms; our algorithms performed better in most areas 

such as accuracy, precision, recall and F-measure both on 

individual and average basis. 

A. Specifically Our Work Comprises of 

1) Converting a single attribute relationship file format 

(.arff) into two separate text file format in which the 

True/False attributes were converted to 1/0 based on the 

target datasets (Defect/Non_defect). 

2) We applied Logistic regression for our classification, 

taking into account a regularizing factor to handle high 

variance problem. 

3) We proposed an efficient classification algorithm 

(predictor) to predict defective and non-defective 

modules by studying four regularization factors. 

4) Our proposed algorithms are: A Variant of 

Variable Regularization Logistic Regression 

(VVRLR) and a Modified Variant of Variable 

Regularization Logistic Regression (MVVRLR). 
5) Compared our proposed algorithm with some selected 

weka algorithms, our algorithm’s average accuracy, 

precision, recall and F-measure performed better with 

VVRLR and Our modified F-measure. 

6) Compare our VVRLR and modified VVRLR: precision, 
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recall and F- measure formulae with the corresponding 

standard formulae respectively which were very close. 

7) Our combined contributions are VVRLR and modified 

VVRLR which were compared with the three weka 

algorithms. 

 

II. RELATED WORK 

Software defect prediction can be modeled as a data mining 

problem with the categorization of software modules as 

defective or non-defective with the usage of historical data. 

Application of data mining and knowledge discovery(DMKD) 

in software reliability management has made notable progress 

as in [12] using methods, algorithms, and 

techniques(procedures) from many disciplines; databases, 

statistics, machine learning, pattern recognition, artificial 

intelligence, data visualization, and optimization [13].  

Software defect prediction has been ongoing area in 

software engineering field for some time now. A lot of related 

studies and approaches have been experimented to come out 

with the right defect prediction model. Defect need not to be 

confused with error, mistake or failure. Defect is said to have 

taken place if in the event of performance the software or 

system fails to perform its desired function [14]. Defect can 

also be observed as the deviation from the software’s 

specification [15] as well as any defectiveness associated to 

software itself and its allied work product [16]. Predicting 

defects is proactive process of characterizing many types of 

defects found in software’s content, design and codes in 

producing high quality product [17]. In their work [15] 

proposed that the size and complexity metrics are among the 

earlier methods to defect prediction. Lines of code (LOC) and 

McCabe’s cyclomatic complexity were used to predict defects 

in software. Simple Bayesian Network was another approach 

used for defect prediction in a form known as Defect type 

Model (DTM) that predicts defect based on severity minor, 

major and minor [18]. Ref. [19] proposed a logistic regression 

classifier for differing training and test distributions; 

Multivariate Linear regression was used by [20] to come out 

with defect inflow prediction for large software projects either 

short-term defect inflow prediction or long-term defect inflow 

prediction. 

For the purpose of easy comparison most of the fault prone 

prediction techniques depend solely on historical data. 

Experimental observation may suggest that a module 

presently undergoing development is said to be fault-prone if 

it has comparable properties which are measured as a result of 

software metrics on the basis of similar module that has been 

developed or released earlier in the same environment [31]. 

Thus, historical information helps us predict fault-proneness. 

As earlier mentioned several modeling techniques have been 

proposed for and applied to software quality prediction. We 

have techniques such as; logistic regression [32] it purposes to 

use domain-specific knowledge to establish the input (i.e. 

software metrics) and output (software fault-proneness) 

relationship. Other techniques are ; classification trees [33], 

[34], neural networks [35], and also genetic algorithms [36], 

all these techniques try to examine the available large-size 

datasets to come up with or recognize patterns and form 

generalizations. A wide range of classification algorithms has 

been applied to different data sets. Different experimental 

setups result in a limited ability to comprehend algorithm’s 

strengths and weaknesses. A modeling methodology is good if 

it is able to perform well on all data sets, or at least most of 

them. Recently, several software engineering data 

repositories have become publicly available (Metrics data 

program NASA IV and V facility. Consequently, these 

datasets can be used to validate and compare the proposed 

predictive models. In order to identify reliable classification 

algorithms, [4] recommended trying a set of different 

predictive models, [37] suggested building a toolbox for 

software quality engineers which includes “good” prediction 

performers. 

 

III. STATISTICAL MODEL USED FOR OUR CLASSIFICATION 

In this work our aim is to apply Logistic regression to learn 

a suitable regularization factor to model a predictor for the 

classification of eight static datasets. We then compared our 

model VVRLR and our modified VVRLR performance with 

some well -known weka algorithms. In this section we will 

talk briefly on some of the basic terms and also come up with 

our model.  

A. The Logistic Model Formula 

The Logistic model formula computes the probability of 

the selected response as a function of the values of the 

predictor variables. Normally if a predictor value is a 

categorical variable with two values, then one of the values is 

assigned the value 1(defective) and the other is assigned the 

value 0(non-defective). In summary, the logistic formula has a 

continuous predictor variable, each dichotomous predictor 

variable with a value of 0 or 1. Logistic regression is used in 

supervised machine learning techniques which are mainly 

used for solving classification problems [38]. 

Let us consider a classification task with l training instances 

{(x (i), y (i)), with i=1, 2, 3, …, l} each x (i) ϵ Rk which is k 

dimensional variable feature vector and y (i) ϵ {1,0} is a class 

label; y is given a feature vector x  as in eqn. (1) 
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The rest of the paper is organized as follows: In Section II, 

we give detailed related work; Section III we present our 

statistical model, Section IV is based on NASA datasets, 

Section V detailed experiments and results and Section VI is 

conclusion and future work. 

Software metric is a simple quantifiable measure obtained 

from any attribute emanating from software life cycle. This 

makes it possible for software engineers to measure and 

predict software process. Software metric is a measure of 

some property of software and/or specification. Several data 

mining methods have been suggested for defect analysis in the 

past years [21]-[24]. Several Researchers have utilized static 

attributes as a guide for software quality predictions [25]-[30]. 

To date researchers have not been able to come up with single 

set of metrics that could act as a unanimously best defect 

predictor. ( ( ))1 1 2 20 0 ....
( 1| , )

1
( ) ( )

1 exp

T

k kx x x xp y x h x g x     
    

   


(1)



  

Definitions: is the hypothesis, function; is known as the 

logistic(sigmoid)  function  and   constitutes a vector learning 

parameters of the logistic regression model. 

0 1x  , 0  is a constant and k  are coefficients of the 

predictor variables. 

Assumptions: 

 

 

 

1| , ( )

0 | , 1 ( )

P y x h x

P y x h x









 

  
                         (2) 

1
( | , ) ( ) (1 ))( ) (y y

p y x h x h x


                 (3) 

 

Another assumption is that the l training examples are 

supposed to be generated independently. The likelihood of 

the parameters is also expressed as shown below;  

 
1

( ) ( ) ,( ) /
l

i i

i

L p y x 


   

 ( ) ( ) ( ) 1

1

( )( ( )) (1 ( ))i i i
l

y y ih x h x
i






                  (4) 

The probabilistic model relates 
( )i

y s and
( )i

x ’s in order to 

optimize the parameters    of the logistic regression model. 

We derive the log likelihood as in (5) to maximize result: 

 

( ) ( ) ( ) ( )

1

) *( ) log ( ) log ( ) (1 log(1 ( )
i

i

l
i i i

l L h x y h xy   


       

(5) 

 

B. Regularized Logistic Regression 

Since the problems considered have datasets which have 

small sample size, we choose to add a regularization term to 

(5) so that it caters for the bias – variance trade off [39]. The 

regularization log likelihood function is in (6), adding the 

minus sign turns it into minimization.   

 

( ) ( ) ( ) ( ) 2

1 1

) *( ) log ( ) log ( ) (1 log(1 ( )
2

;j

i

i

l l
i i i

i

l L h x y h x
l

y  


  

 

        
 

(6) 

 

  is positive value; which is also the regularization factor, 

  was learned  using one of the dataset used in this 

experiment specifically Ar1; we used the following range of 

lambda : 
6 6

10 10

   this gave us an optimal  value of 

4
10


 with a corresponding optimal  value at the 

optimization point, which converges at the ( )J I th 
 iteration 

using the Newton’s method for convergence as in (7) . 

 

( ( ) ( ) ( )) 2

1 1

1
log 1 log 1

2
( ) [ ( ( )) ( ) ( ( ))]

i

m k
i i i i

j
j

y h x y h x
m m

J I  




 

     
 

(7) 

 

In vector notation updates of    according to Newton’s 

method is shown by (8): 

) )( 1 ( 1t t
H J  

                            (8) 

 

J , gradient and H the Hessian is the second partial 

derivative of ( )J  . The formulas used for computing the 

two values are shown in Equations (9) and (10) respectively. 

 

J 

( (( )

( (( )

1

( (( )

2

( (( )

) )
01

) )
11

) )
21

) )

1

1

1

1

1

( ( ) )

( ( ) )

( ( ) )

.

.

.

( ( ) )

i

i

i

ki

l i ii

l i ii

l i ii

l i ii
k

h x y x
m

h x y x
m

h x y x
m

h x y x
m

m

m

m


































 
 
 
 
 
 
 
 
 
 
 
 
 
 
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







     (9) 
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



 
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 
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 
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(10) 

 

Computation of , y


 and X : 

 
1

4

0

1

1

.
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.

1

10  

T T
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m


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


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 
 
 
 
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   

 

 

The matrix following 
m


 is an (k+1) by (k+1) diagonal 

matrix with a zero in the upper left and ones down the other 
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diagonal entries; k is the number of features, without the 

intercept term( 0 0X ).
( )ix  is  k x1 feature vector; J  is k 

x  1 vector;  ( ) ( )
T

i ix x  and  H are  k x k matrices; 
( )iy  and 

( )( )ih x
 are scalars. 

 

IV. DATASETS USED FOR THE MODEL 

This section looks at few characteristics features of the 

datasets used for our work; the datasets used are publicly 

available for use in this field The data emanated from the 

NASA IV and V Metrics data program (MDP)/ promise 

repository and soft This section looks at few characteristics 

features of the datasets used for our work; the datasets used 

are publicly available for use in this field.  The data emanated 

from the NASA IV and V Metrics data program (MDP)/ 

promise repository and softlab. 

A. Analysis of Promise NASA Datasets 

Each of the dataset used for this work comprises of several 

software modules, together with their number of defects and 

characteristics code attributes. Apart from the line of code 

(LOC) counts; the NASA promise datasets include several 

Halstead attributes as well as the McCabe complexity 

measures. The former; estimate reading complexity by 

counting operators and operands in a module, while the latter 

is derived from a module of flow graph. 

B. Analysis of Datasets in Tabular Form 

The analysis of this paper applies static code from 8 

projects tabulated in Table I, which are downloaded from the 

PROMISE repository [40], which also shows static code 

features. An advantage of static code features is that they can 

be quickly and automatically be collected from source code, 

even if no other information is available. Summary of the 

datasets used by [40], [41] in their work as well as individual 

features per data set, along with some general statistics was 

used with our own additional features.  

 

TABLE I: CHARACTERISTICS OF PROJECTS FROM ASA/SOFTLAB 

NASA/Softlab dataset Ar1 Ar4 Ar6 CM1 KC2 KC3 MC2 MW1 

branccount X X X X X X X X 

codeandcommentloc X X X X X X X X 

commentloc X X X X X X X X 

cyclomaticcomplexity X X X X X X X X 

designcomplexity X X X X X X X X 

halsteaddifficulty X X X X X X X X 

halsteadeffort X X X X X X X X 

halsteaderror X X X X X X X X 

halsteadlength X X X X X X X X 

halsteadtime X X X X X X X X 

halsteadvolume X X X X X X X X 

totaloperands X X X X X X X X 

totaloperators X X X X X X X X 

uniqueoperands X X X X X X X X 

uniqueoperators X X X X X X X X 

executalbeloc X X X X X X X X 

totalloc X X X X X X X X 

halsteadcontent    X X X X X 

essentialcomplexity    X X X X X 

halsteadvocabulary X X X X X    

blankloc X X X X X X X X 

callpairs X X X   X X X 

conditioncount X X X   X X X 

cyclomaticdensity X X X   X X X 

decisioncount X X X   X X X 

decisiondensity X X X   X X X 

halsteadlevel X X X   X X X 

multipleconditioncount X X X   X X X 

designdensity X X X   X X X 

Normcyclomaticcomp. X X X   X X X 

formalparameters X X X   X X X 

modifiedconditioncount      X X X 

maintenanceseverity      X X X 

edgecount      X X X 

nodecount      X X X 

essentialdensity      X X X 

globaldatacomplexity      X X  

globaldatadensity      X X  

percentcomment      X X X 

numberoflines      X X X 

Num. of code attributes 29 29 29 21 21 39 39 37 

Number of modules 121 101 107 498 522 458 162 403 

Percentage defectives(%) 7.4 14.9 18.7 9.8 20.1 9.4 32.3 7.6 

Language of dataset C C C C C++ Java C++ C++ 
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Table I describes eight software projects used in this work, 

the top row labeled “NASA/Softlab” depicts datasets from 

NASA aerospace projects and “SOFTLAB” come from a 

Turkish software company that develop  applications for 

domestic appliances. In the table cells marked “X” represents 

the presence of that feature for the dataset, the total number of 

features per dataset used for our work are: 22 attributes for 

KC2,MC2 and MW1; CM1 64 features ; KC3 79 features and 

all the datasets from “SOFTLAB” – AR1,AR4 and AR6 in 

each we used 88 features, all the features actually used for our 

experiments were reviewed upwards; and also at the bottom 

of the table we have Number of modules, Percentage 

defective and  Language of dataset to write each application. 

 

V. DETAILED EXPERIMENTS AND OUTCOMES 

In this study we used MATLAB version R2011b [42], and 

Waikato Environment for Knowledge Analysis (Weka) 

version 3.6.7; a popular suit of machine learning software 

written in Java [43]. 

A. Statistical Characteristics of Data 

All defects frequently exhibit non-normality characteristics; 

like skewness, unstable variances, collinearity, and excessive 

outliers. The following are some of the characteristics of the 

software data sets considered in our analysis. Features are 

independent of each other; input features are continuous while 

output features are discrete. 

B. Indicators for Our Assessment 

Binary classifiers are characteristically assessed by 

counting the number of correctly predicted modules over 

hold-out data. This procedure has four possible outcomes: 

True positives (TP) are modules classified correctly as 

defective modules. False positives (FP) refer to non- defective 

modules incorrectly labeled as defective. True negatives (TN) 

correspond to correctly classified non-defective modules. 

 

TP TN
OverallAccuracy

TP FP FN TN




  
         (11) 

 

Precision: This is the number of defective modules which 

are actually defective modules [44]. 

 

TP
Precision

TP FP



                         (12) 

 

Recall: This is the percentage of defective modules that are 

correctly classified. 

 

TP
Recall

TP FN



                              (13) 

F-Measure: It is the harmonic mean of precision and recall. 

F-Measure has been widely used in information retrieval. 

 

2 Precision Recall
F Measure

Precision Recall

 
 


          (14) 

 

 

In our intuitive formula for Precision for imbalanced data, 

but with a high performance, we applied the original precision 

formula in (12): We then suppress FP to approximately one {1} 

using the False Positive Rate, by rewriting FP as the power of 

its rate, 
FPR

FP . 

 
FPR

FP FP                                (15) 

 

And 

  
TPR

TP PT                                  (16) 

 

Now substituting (15) and (16) into (12) gives us (17), our 

proposed precision (AR) formula: 

 

 

   
( )

TPR

TPR FPR

T
Precision AR

P

TP FP




 
  
 

           (17) 

 

which is our proposed variant precision formula for an 

imbalanced dataset. Applying the same principle as in 

equation (17) we can formulate the Recall and F-Measure 

formulae by applying the respective rates, as follows:   

 

 

 

 1
( )

TPR

TPRTPR

TP
Recall AR

FN TP




 
  
 

                (18) 

 

We now compute F_ Measure   using the original formula 

in (14) in unification with the TPR, FPR and FNR to obtain 

our proposed F_measure by substituting (17) and (18) into 

(14) to obtain (19): 

 
 

   

 

 

 

   

 

 

(1 )

(1 )

( ) 2

TPR TPR

TPR FPR TPRTPR

TPR TPR

TPR FPR TPRTPR

TP TP

TP FP FN TP
F measure AR

TP TP

TP FP FN TP






 

  


 

  
   
  
 
  
   
  

 

 

 

 

( )

( )

( )

( )

1

( ) 2

1

TPR

FPR
TPR

TPR

FPR
TPR

TP

TP FPF measure AR
TP

TP FP

 
 
  
 

 
 
  
 



  





 
 
 
 
 
 
 

       

(19) 
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C. Our Proposed Precision, Recall and F-Measure 

Formulas

Finally, False negatives (FN) are defective modules 

incorrectly classified as non-defective. These can be put in a 2

× 2 matrix called confusion table. The most commonly used 

criterions are precision, recall and F-measure defined by (11) 

- (14). verall accuracy: Accuracy is the percentage of 

correctly classified modules [7]. It is one of the most widely 

used classification performance metrics.

Our proposed Algorithm 1 and 2 are used to compute the 

hypothesis function and evaluators. In particular, Algorithm 1 



  

computes hypothesis function while Algorithm 2 compares h 

and Y values and then finally used to compute evaluators. 

 

Algorithm 1 A Variant Variable Regularization Logistic Regression 

(VVRLR) 

 

Input: Files X and Y < split *.arff into two text files and convert True to 1 

and False to 0> 

Output: < J;   Omega (norm); h > 

 

1. add extra values of ones in the first column, to increase the number 

of attributes by 1, (n+1) 

2. Mu(i) =  Mean(X); Std(X) = Standard Deviation(X); 

3. for   i ϵ (2,3,…,n) do 

4.        
(:, ) ( )

(:, )
( )

X i Mu i
X i

Std i


 ; 

5. end for 

6. 
exp( )

1 exp( )

Z
g

Z



 / Application of Sigmoid to compute individual 

values 

7. for i=1: Max-Iteration do 

8.        Omega = Initialize the size of X (I, : ) to zeros; 

9.        Z = X * Theta; 

10.        H = g(Z); / Computing hypothesis function 

11.      J(i) = log( Logistic  function) +  ( lambda’(2*m) * 

norm( Omega[2:end]))^2; /        Computing J __ for 

convergence 

12.        G = gradient; H = Hessian matrix;   

13.        Theta = Theta -  ; / Update for Omega 

14. end for 

15. Return J;   Omega (norm); h; 

 

Algorithm 2  Evaluator’s Computation 

Input:  < h and Y , Omega > 

Output: < P > 

 

1. h1 = zeros(size(h)); 

2. for i= 1:num1 (h) do 

3.        if h(i) >= 0.45 then  

4.                h(i)= 1; 

5.        end if 

6. end for 

7. Initialization of : FP, TP, TN, FN ; / Computation of confusion 

matrix values 

8. for l=1: num1 do 

9.         if Y (l) ==1 and h1(l) ==1 then 

10.                TP = TP + 1; 

11.                 else if Y(l)== 1 and   h(l) == 0 then 

12.                        FN = FN +1 ; 

13.                        else if Y==0 and h1(l) == 1 then 

14.                               FP = FP + 1 ; 

15.                               else TN =   TN + 1; 

16.                        end if 

17.                  end if 

18.          end if 

19. end for 

20. Compute Evaluators (P) as follows:- 

21. Total = TP+ FP+TN+FN;  

22. Accuracy = 
TP TN

Total


; 

23. 

 

   
( )

TPR

TPR FPR

T
Precision AR

P

TP FP




 
  
 

 ;    

24. 

 

 1
( )

TPR

TPRTPR

TP
Recall AR

FN TP




 
  
 

 ; 

25. 
 

 

( )

( )

( )

( )

1

( ) 2

1

TPR

FPR
TPR

TPR

FPR
TPR

TP

TP FPF measure AR
TP

TP FP

 
 
  
 

 
 
  
 



  





 
 
 
 
 
 
 

 ; 

26. MAE =  
FN FP

Total


 ; 

27. Return P; 

 

 

D. Experimental Setup 

The datasets were loaded in turn into our model using 

threshold values of 0.45; once when parameters j  are 

established, classification model can be employed according 

to (1). LR gives us probabilities interpretation of class 

membership in the range [0-1], thus at this point decision 

threshold needs to be defined. Every value obtained from (1) 

which is greater than 0.45 is treated as “1” i.e. instance 

belongs to class and below threshold values is treated as “0” 

i.e. instance does not belong to class. This process was done 

for each of the four regularized values resulting in an initial 64 

experiments.  

After each run of the experiment we read the following 

metric values: TP, FP, TN, FN, from our algorithms: 

Algorithm 1 and Algorithm 2. We then proceeded to compute 

Accuracy (Accy), Precision (Preci), Mean Average Error 

(MAE), Recall, F-Measures (F-meas), and  (the norm of the 

parameters ) for each of the eight datasets by the application 

of (11) - (14) and recomputed precision, recall and F-measure 

with our proposed formulas (17) – (19). 

We then compare our proposed model with three predictors 

from the Weka algorithm suite. The eight datasets with 

variable features used to carry out the empirical experiments 

are shown in Table I; the three weka classifiers are; 

BayesianLogisticRegression, Naïve Bayes and Simple 

Logistic. Our proposed classifier model (algorithm) was 

modeled using these omega ( ); 10^-4, 10^-6, 10^3 and 

10^6 out of which we picked the one which yielded the best 

results. 

E. Outcomes of Experiments 

In Table II we recorded the metric measures for our model 

variable regularized logistic regression using the best values 

for  = 10^-4 for the eight datasets: our main discussion was 

on how best our model performed in terms of F-measure, the 

harmonic mean of precision and recall which determines the 

tradeoff between precision and recall; the 0.45 threshold gave 

similar values of 94.97% and 100% as compared to the 0.5 

threshold value for Ar1, Ar4 and Ar6 respectively and gave 

100% recall for all three datasets at the 0.45 and 0.5 

thresholds. While the datasets; Cm1, Kc2, Kc3, Mc2 and 

Mw1 produced the following f-measure values from 50.00% 

to 79.45% for  =10^-4. 

Table III gives a summary of the performance of VVRLR 

and Modified VVRLR with three weka algorithms applied in 

this experiment in terms of accuracy and the F-measure 

metrics. The summary shows that VVRLR performance 
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surpassed the three algorithms from Weka. Table III 

compares our F-measure results with the three weka results; 

Fig. 1 is the graphical representation of Table III; thus our 

evaluator is said to have a higher performance than the three 

weka algorithms. Fig. 1 depicts the weka algorithms, VVRLR 

and modified VVRLR the last two which happens to be our 

algorithms performed better compared to the three weka 

algorithms.  
 

TABLE II: CLASSIFICATION MODEL RESULTS FOR ʎ  =10^-4 

    Algorithm 

 

 

Dataset 

Accuracy in % F-Measure in %  

Simple 

logistic 

 

Naïve 

Bayes 

Bayesian 

Logistic 

Regression 

VRLR 

Simple 

logistic 

 

Naïve 

Bayes 

Bayesian 

Logistic 

Regression 

VRLR 
OUR 

VRLR 

Ar1 92.56 85.95 92.56 99.17 0.00 32.00 0.00 94.74 90.00 

Ar4 90.65 85.98 43.93 89.72 67.00 55.00 38.00 100 95.24 

Ar6 89.11 85.15 87.13 95.05 42.00 44.00 24.00 100 93.75 

Cm1 90.16 84.94 90.16 91.37 0.00 29.00 0.00 51.95 44.79 

Kc2 84.48 83.72 20.50 84.29 52.00 50.00 34.00 55.91 60.03 

Kc3 90.83 84.93 90.61 93.23 22.00 34.00 0.00 79.45 85.22 

Mc2 77.64 73.91 49.07 86.34 57.00 46.00 53.00 79.25 93.44 

Mw1 93.30 83.62 92.31 94.04 27.00 33.00 0.00 50.00 42.43 

Mean value 88.59 83.53 70.78 91.65 33.38 40.38 18.63 76.41 75.61 

 

TABLE III: CLASSIFICATION MODEL RESULTS FOR: ʎ  =10^-4 

Data- Thresh/ ʎ =10^-4 

set Meas. TP FP TN FN Accy MAE Preci Recall Fmeas Norm-Ѳ 

Ar1 0.45 9 1 111 0 0.9917 0.0083 0.9 1 0.9474 99.5445 

  0.5 9 1 111 0 0.9917 0.0083 0.9 1 0.9474 99.5445 

Ar4 0.45 20 0 87 0 1 0 1 1 1 153.4152 

  0.5 20 0 87 0 1 0 1 1 1 153.4152 

Ar6 0.45 15 0 86 0 1 0 1 1 1 141.3118 

  0.5 15 0 86 0 1 0 1 1 1 141.3118 

Cm1 0.45 20 8 441 29 0.9257 0.0743 0.7143 0.4082 0.5195 173.3848 

  0.5 19 4 445 30 0.9317 0.0683 0.8261 0.3878 0.5278 173.3848 

Kc2 0.45 52 27 388 55 0.8429 0.1571 0.6582 0.486 0.5591 31.36 

  0.5 50 21 394 57 0.8506 0.1494 0.7042 0.4673   0.5618 31.3647 

Kc3 0.45 29 1 414 14 0.9672 0.0328 0.9667 0.6744 0.7945 187.5752 

  0.5 27 0 415 16 0.9651 0.0699 1 0.6279 0.7714 187.5752 

Mc2 0.45 42 12 97 10 0.8634 0.1366 0.7778 0.8077 0.7925 34.53 

  0.5 37 9 100 15 0.8509 0.1491 0.8043 0.7115 0.7551 34.5312 

Mw1 0.45 12 5 367 19 0.9404 0.0596 0.7059 0.3871 0.5 14.18 

  0.5 10 4 368 21 0.938 0.062 0.7143 0.3226 0.4444 14.1812 

 

 
Fig. 1. Graphical representation of VVRLR, MVVRLR and weka 

F-measures. 

 

  

In this work we used logistic regression to model our 

classifier VVRLR with original formulas and our proposed 

formulas for precision, recall and F-measure, by using 

variable regularization factors; out of which we obtained the 

one which gave the best evaluator with a factor of   
410    

We then subjected the same datasets to three algorithms from 

Weka to check the performance of VVRLR and modified 

VVRLR. Our experiments were performed using eight NASA 

datasets from PROMISE repository. The following measures 

were used to evaluate the performance of VVRLR: accuracy, 

recall and F-Measure.  

The experimental results showed that VVRLR and our 

proposed modified VVRLR F-measure algorithm outclassed 

the other three algorithms from weka algorithms.  

In this work we considered small training/test datasets, 

which gave us excellent results. Future research will consider 

very large datasets in the thousand range set with more and 

selected instances to achieve better results and   consider 

receiver operating characteristics curves using different 

threshold. 
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