

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

107DOI: 10.7763/LNSE.2016.V4.234



Abstract—Empirical studies on software defect prediction

models have come up with various predictors. In this study we

examined variable regularized factors in conjunction with

Logistic regression. Our work was built on eight public NASA

datasets commonly used in this field. We used one of the datasets

for our learning classification out of which we selected the

regularization factor with the best predictor model; we then

used the same regularization factor to classify the other seven

datasets. Our proposed algorithm Variant Variable Regularized

Logistic Regression (VVRLR) and modified VVRLR; were then

used in the following metrics to measure the effectiveness of our

predictor model: accuracy, precision, recall and F-Measure for

each dataset. We measured above metrics using three Weka

models, namely: BayesianLogisticRegression, NaiveBayes and

Simple Logistic and then compared these results with VVRLR.

VRLR and modified VVRLR outperformed the weka

algorithms per our metric measurements. The VVRLR

produced the best accuracy of 100.00%, and an average

accuracy of 91.65 %; we had an individual highest precision of

100.00%, highest individual recall of 100.00% and F-measure of

100.00% as the overall best with an average value of 76.41%

was recorded by VVRLR for some datasets used in our

experiments. Our proposed modified VVRLR and variant

VVRLR algorithms for F-measures outperformed the three

weka algorithms.

Index Terms—F-measure, precision, recall, variant variable

regularized logistic regression.

I. INTRODUCTION

Detection of software defective modules in an early stage

of its life cycle is very valuable and also saves cost. This can

be appreciated in the case of telecommunication and military

systems [1]-[3], identifying defects at a later stage may lead to

paying an expensive price. Software usually comprises of a

great number of impartially independent units termed

modules which execute certain functions [4]. A software

model can be viewed as an empirical tool using a definite

algorithm to determine the type of modules [1].

Diversity of software defect prediction techniques are

available and these include, machine learning, parametric,

Manuscript received August 6, 2014; revised January 5, 2015. This

research (work) was partially supported by the grant (No. 2012FZ0063) from

the Ministry of Science and Technology of Sichuan Province.

G. K. Armah is with University of Electronic Science of China (UESTC),

China. He is also with University for Development Studies, Navrongo,

Ghana (e-mail: gabrielarmah1@com).

G. Luo and Ke Qin are with School of Computer Science and Engineering,

University of Electronic Science and Technology of China/Computer

Science, Chengdu, China (e-mail: gcluo@uestc.edu.cn,

qinke@uestc.edu.cn).

Angolo Shem Mbandu is with UESTC/Computer Science, China.

statistical and mixed model techniques[5].Current studies has

shown that many researchers use machine learning for

software quality prediction. Classification and clustering are

some approaches in machine learning where classification is

extensively used [6], [7].

Many researchers have proposed different defect

predictors for classifying defective modules such as;

discriminant analysis by [8]; Linear regression as was

proposed by [9], and [10] worked on Naïve.

Bayes classification, for the aforementioned predictors [10]

in their work stated that, Naïve Bayes performance is

significantly better than the other methods. Nonetheless our

proposed model performed better than Naïve Bayes in

addition to two other algorithms used in our experiments.

Although the algorithms used differ, they all employ complex

metrics as an input predictor, same as in our work, and a

prediction of fault-prone or non-fault- prone as an output

response variable and aim at reducing the cost of the

misclassification [11].

In this paper we applied variable regularized logistic

regression with four regularization factors for predicting

defective software and selected the best regularization as

fixed regularized logistics factor for our proposed model. We

increased the number of attributes to a polynomial of

maximum degree of four from a public dataset; and compared

the efficiency of VVRLR with three weka classification

algorithms; our algorithms performed better in most areas

such as accuracy, precision, recall and F-measure both on

individual and average basis.

A. Specifically Our Work Comprises of

1) Converting a single attribute relationship file format

(.arff) into two separate text file format in which the

True/False attributes were converted to 1/0 based on the

target datasets (Defect/Non_defect).

2) We applied Logistic regression for our classification,

taking into account a regularizing factor to handle high

variance problem.

3) We proposed an efficient classification algorithm

(predictor) to predict defective and non-defective

modules by studying four regularization factors.

4) Our proposed algorithms are: A Variant of

Variable Regularization Logistic Regression

(VVRLR) and a Modified Variant of Variable

Regularization Logistic Regression (MVVRLR).
5) Compared our proposed algorithm with some selected

weka algorithms, our algorithm’s average accuracy,

precision, recall and F-measure performed better with

VVRLR and Our modified F-measure.

6) Compare our VVRLR and modified VVRLR: precision,

Applying Variant Variable Regularized Logistic

Regression for Modeling Software Defect Predictor

Gabriel Kofi Armah, Member, IACSIT, Guanchun Luo, Ke Qin, and Angolo Shem Mbandu, Member,

IACSIT

recall and F- measure formulae with the corresponding

standard formulae respectively which were very close.

7) Our combined contributions are VVRLR and modified

VVRLR which were compared with the three weka

algorithms.

II. RELATED WORK

Software defect prediction can be modeled as a data mining

problem with the categorization of software modules as

defective or non-defective with the usage of historical data.

Application of data mining and knowledge discovery(DMKD)

in software reliability management has made notable progress

as in [12] using methods, algorithms, and

techniques(procedures) from many disciplines; databases,

statistics, machine learning, pattern recognition, artificial

intelligence, data visualization, and optimization [13].

Software defect prediction has been ongoing area in

software engineering field for some time now. A lot of related

studies and approaches have been experimented to come out

with the right defect prediction model. Defect need not to be

confused with error, mistake or failure. Defect is said to have

taken place if in the event of performance the software or

system fails to perform its desired function [14]. Defect can

also be observed as the deviation from the software’s

specification [15] as well as any defectiveness associated to

software itself and its allied work product [16]. Predicting

defects is proactive process of characterizing many types of

defects found in software’s content, design and codes in

producing high quality product [17]. In their work [15]

proposed that the size and complexity metrics are among the

earlier methods to defect prediction. Lines of code (LOC) and

McCabe’s cyclomatic complexity were used to predict defects

in software. Simple Bayesian Network was another approach

used for defect prediction in a form known as Defect type

Model (DTM) that predicts defect based on severity minor,

major and minor [18]. Ref. [19] proposed a logistic regression

classifier for differing training and test distributions;

Multivariate Linear regression was used by [20] to come out

with defect inflow prediction for large software projects either

short-term defect inflow prediction or long-term defect inflow

prediction.

For the purpose of easy comparison most of the fault prone

prediction techniques depend solely on historical data.

Experimental observation may suggest that a module

presently undergoing development is said to be fault-prone if

it has comparable properties which are measured as a result of

software metrics on the basis of similar module that has been

developed or released earlier in the same environment [31].

Thus, historical information helps us predict fault-proneness.

As earlier mentioned several modeling techniques have been

proposed for and applied to software quality prediction. We

have techniques such as; logistic regression [32] it purposes to

use domain-specific knowledge to establish the input (i.e.

software metrics) and output (software fault-proneness)

relationship. Other techniques are ; classification trees [33],

[34], neural networks [35], and also genetic algorithms [36],

all these techniques try to examine the available large-size

datasets to come up with or recognize patterns and form

generalizations. A wide range of classification algorithms has

been applied to different data sets. Different experimental

setups result in a limited ability to comprehend algorithm’s

strengths and weaknesses. A modeling methodology is good if

it is able to perform well on all data sets, or at least most of

them. Recently, several software engineering data

repositories have become publicly available (Metrics data

program NASA IV and V facility. Consequently, these

datasets can be used to validate and compare the proposed

predictive models. In order to identify reliable classification

algorithms, [4] recommended trying a set of different

predictive models, [37] suggested building a toolbox for

software quality engineers which includes “good” prediction

performers.

III. STATISTICAL MODEL USED FOR OUR CLASSIFICATION

In this work our aim is to apply Logistic regression to learn

a suitable regularization factor to model a predictor for the

classification of eight static datasets. We then compared our

model VVRLR and our modified VVRLR performance with

some well -known weka algorithms. In this section we will

talk briefly on some of the basic terms and also come up with

our model.

A. The Logistic Model Formula

The Logistic model formula computes the probability of

the selected response as a function of the values of the

predictor variables. Normally if a predictor value is a

categorical variable with two values, then one of the values is

assigned the value 1(defective) and the other is assigned the

value 0(non-defective). In summary, the logistic formula has a

continuous predictor variable, each dichotomous predictor

variable with a value of 0 or 1. Logistic regression is used in

supervised machine learning techniques which are mainly

used for solving classification problems [38].

Let us consider a classification task with l training instances

{(x (i), y (i)), with i=1, 2, 3, …, l} each x (i) ϵ Rk which is k

dimensional variable feature vector and y (i) ϵ {1,0} is a class

label; y is given a feature vector x as in eqn. (1)

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

108

The rest of the paper is organized as follows: In Section II,

we give detailed related work; Section III we present our

statistical model, Section IV is based on NASA datasets,

Section V detailed experiments and results and Section VI is

conclusion and future work.

Software metric is a simple quantifiable measure obtained

from any attribute emanating from software life cycle. This

makes it possible for software engineers to measure and

predict software process. Software metric is a measure of

some property of software and/or specification. Several data

mining methods have been suggested for defect analysis in the

past years [21]-[24]. Several Researchers have utilized static

attributes as a guide for software quality predictions [25]-[30].

To date researchers have not been able to come up with single

set of metrics that could act as a unanimously best defect

predictor. (())1 1 2 20 0
(1| ,)

1
() ()

1 exp

T

k kx x x xp y x h x g x     
    

   


(1)

Definitions: is the hypothesis, function; is known as the

logistic(sigmoid) function and constitutes a vector learning

parameters of the logistic regression model.

0 1x  , 0 is a constant and k are coefficients of the

predictor variables.

Assumptions:

 

 

1| , ()

0 | , 1 ()

P y x h x

P y x h x









 

  
 (2)

1
(| ,) () (1))() (y y

p y x h x h x


  (3)

Another assumption is that the l training examples are

supposed to be generated independently. The likelihood of

the parameters is also expressed as shown below;

 
1

() () ,() /
l

i i

i

L p y x 


 

 () () () 1

1

()(()) (1 ())i i i
l

y y ih x h x
i






  (4)

The probabilistic model relates
()i

y s and
()i

x ’s in order to

optimize the parameters  of the logistic regression model.

We derive the log likelihood as in (5) to maximize result:

() () () ()

1

) *() log () log () (1 log(1 ()
i

i

l
i i i

l L h x y h xy   


    

(5)

B. Regularized Logistic Regression

Since the problems considered have datasets which have

small sample size, we choose to add a regularization term to

(5) so that it caters for the bias – variance trade off [39]. The

regularization log likelihood function is in (6), adding the

minus sign turns it into minimization.

() () () () 2

1 1

) *() log () log () (1 log(1 ()
2

;j

i

i

l l
i i i

i

l L h x y h x
l

y  


  

 

        

(6)

 is positive value; which is also the regularization factor,

 was learned using one of the dataset used in this

experiment specifically Ar1; we used the following range of

lambda :
6 6

10 10

  this gave us an optimal  value of

4
10


 with a corresponding optimal  value at the

optimization point, which converges at the ()J I th
 iteration

using the Newton’s method for convergence as in (7) .

(() () ()) 2

1 1

1
log 1 log 1

2
() [(()) () (())]

i

m k
i i i i

j
j

y h x y h x
m m

J I  




 

     

(7)

In vector notation updates of  according to Newton’s

method is shown by (8):

))(1 (1t t
H J  

  (8)

J , gradient and H the Hessian is the second partial

derivative of ()J  . The formulas used for computing the

two values are shown in Equations (9) and (10) respectively.

J 

((()

((()

1

((()

2

((()

))
01

))
11

))
21

))

1

1

1

1

1

(())

(())

(())

.

.

.

(())

i

i

i

ki

l i ii

l i ii

l i ii

l i ii
k

h x y x
m

h x y x
m

h x y x
m

h x y x
m

m

m

m


































 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 









 (9)

 ()

1

() () ()

0

1

1
1

1 .

.

.

1

()(())
m

i

i

T
i i i

H x h x x
m m

h x 





 

 
 
 
 

       
 
 
 
 



(10)

Computation of , y


 and X :

1

4

0

1

1

.

.

.

1

10

T T
X X X y

m














  
  
  
  
  
  
  
  
  

  

 ，

(

(1)

(2)

)

.

.

.
m

y

y

y

y




 
 
 
 
 
 
 
 
  

 

 

 ()

(1)

(2)

.

.

.

T

T

T
l

x

x

X

x



  
 
 
  
 
 
 
 
 
 
   

The matrix following
m


 is an (k+1) by (k+1) diagonal

matrix with a zero in the upper left and ones down the other

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

109

diagonal entries; k is the number of features, without the

intercept term(0 0X).
()ix is k x1 feature vector; J is k

x 1 vector;  () ()
T

i ix x and H are k x k matrices;
()iy and

()()ih x
 are scalars.

IV. DATASETS USED FOR THE MODEL

This section looks at few characteristics features of the

datasets used for our work; the datasets used are publicly

available for use in this field The data emanated from the

NASA IV and V Metrics data program (MDP)/ promise

repository and soft This section looks at few characteristics

features of the datasets used for our work; the datasets used

are publicly available for use in this field. The data emanated

from the NASA IV and V Metrics data program (MDP)/

promise repository and softlab.

A. Analysis of Promise NASA Datasets

Each of the dataset used for this work comprises of several

software modules, together with their number of defects and

characteristics code attributes. Apart from the line of code

(LOC) counts; the NASA promise datasets include several

Halstead attributes as well as the McCabe complexity

measures. The former; estimate reading complexity by

counting operators and operands in a module, while the latter

is derived from a module of flow graph.

B. Analysis of Datasets in Tabular Form

The analysis of this paper applies static code from 8

projects tabulated in Table I, which are downloaded from the

PROMISE repository [40], which also shows static code

features. An advantage of static code features is that they can

be quickly and automatically be collected from source code,

even if no other information is available. Summary of the

datasets used by [40], [41] in their work as well as individual

features per data set, along with some general statistics was

used with our own additional features.

TABLE I: CHARACTERISTICS OF PROJECTS FROM ASA/SOFTLAB

NASA/Softlab dataset Ar1 Ar4 Ar6 CM1 KC2 KC3 MC2 MW1

branccount X X X X X X X X

codeandcommentloc X X X X X X X X

commentloc X X X X X X X X

cyclomaticcomplexity X X X X X X X X

designcomplexity X X X X X X X X

halsteaddifficulty X X X X X X X X

halsteadeffort X X X X X X X X

halsteaderror X X X X X X X X

halsteadlength X X X X X X X X

halsteadtime X X X X X X X X

halsteadvolume X X X X X X X X

totaloperands X X X X X X X X

totaloperators X X X X X X X X

uniqueoperands X X X X X X X X

uniqueoperators X X X X X X X X

executalbeloc X X X X X X X X

totalloc X X X X X X X X

halsteadcontent X X X X X

essentialcomplexity X X X X X

halsteadvocabulary X X X X X

blankloc X X X X X X X X

callpairs X X X X X X

conditioncount X X X X X X

cyclomaticdensity X X X X X X

decisioncount X X X X X X

decisiondensity X X X X X X

halsteadlevel X X X X X X

multipleconditioncount X X X X X X

designdensity X X X X X X

Normcyclomaticcomp. X X X X X X

formalparameters X X X X X X

modifiedconditioncount X X X

maintenanceseverity X X X

edgecount X X X

nodecount X X X

essentialdensity X X X

globaldatacomplexity X X

globaldatadensity X X

percentcomment X X X

numberoflines X X X

Num. of code attributes 29 29 29 21 21 39 39 37

Number of modules 121 101 107 498 522 458 162 403

Percentage defectives(%) 7.4 14.9 18.7 9.8 20.1 9.4 32.3 7.6

Language of dataset C C C C C++ Java C++ C++

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

110

Table I describes eight software projects used in this work,

the top row labeled “NASA/Softlab” depicts datasets from

NASA aerospace projects and “SOFTLAB” come from a

Turkish software company that develop applications for

domestic appliances. In the table cells marked “X” represents

the presence of that feature for the dataset, the total number of

features per dataset used for our work are: 22 attributes for

KC2,MC2 and MW1; CM1 64 features ; KC3 79 features and

all the datasets from “SOFTLAB” – AR1,AR4 and AR6 in

each we used 88 features, all the features actually used for our

experiments were reviewed upwards; and also at the bottom

of the table we have Number of modules, Percentage

defective and Language of dataset to write each application.

V. DETAILED EXPERIMENTS AND OUTCOMES

In this study we used MATLAB version R2011b [42], and

Waikato Environment for Knowledge Analysis (Weka)

version 3.6.7; a popular suit of machine learning software

written in Java [43].

A. Statistical Characteristics of Data

All defects frequently exhibit non-normality characteristics;

like skewness, unstable variances, collinearity, and excessive

outliers. The following are some of the characteristics of the

software data sets considered in our analysis. Features are

independent of each other; input features are continuous while

output features are discrete.

B. Indicators for Our Assessment

Binary classifiers are characteristically assessed by

counting the number of correctly predicted modules over

hold-out data. This procedure has four possible outcomes:

True positives (TP) are modules classified correctly as

defective modules. False positives (FP) refer to non- defective

modules incorrectly labeled as defective. True negatives (TN)

correspond to correctly classified non-defective modules.

TP TN
OverallAccuracy

TP FP FN TN




  
 (11)

Precision: This is the number of defective modules which

are actually defective modules [44].

TP
Precision

TP FP



 (12)

Recall: This is the percentage of defective modules that are

correctly classified.

TP
Recall

TP FN



 (13)

F-Measure: It is the harmonic mean of precision and recall.

F-Measure has been widely used in information retrieval.

2 Precision Recall
F Measure

Precision Recall

 
 


 (14)

In our intuitive formula for Precision for imbalanced data,

but with a high performance, we applied the original precision

formula in (12): We then suppress FP to approximately one {1}

using the False Positive Rate, by rewriting FP as the power of

its rate,
FPR

FP .

FPR

FP FP  (15)

And

TPR

TP PT (16)

Now substituting (15) and (16) into (12) gives us (17), our

proposed precision (AR) formula:

 

   
()

TPR

TPR FPR

T
Precision AR

P

TP FP




 
  
 

 (17)

which is our proposed variant precision formula for an

imbalanced dataset. Applying the same principle as in

equation (17) we can formulate the Recall and F-Measure

formulae by applying the respective rates, as follows:

 

 1
()

TPR

TPRTPR

TP
Recall AR

FN TP




 
  
 

 (18)

We now compute F_ Measure using the original formula

in (14) in unification with the TPR, FPR and FNR to obtain

our proposed F_measure by substituting (17) and (18) into

(14) to obtain (19):

 

   

 

 

 

   

 

 

(1)

(1)

() 2

TPR TPR

TPR FPR TPRTPR

TPR TPR

TPR FPR TPRTPR

TP TP

TP FP FN TP
F measure AR

TP TP

TP FP FN TP






 

  


 

  
   
  
 
  
   
  

 

 

()

()

()

()

1

() 2

1

TPR

FPR
TPR

TPR

FPR
TPR

TP

TP FPF measure AR
TP

TP FP

 
 
  
 

 
 
  
 



  





 
 
 
 
 
 
 

(19)

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

111

C. Our Proposed Precision, Recall and F-Measure

Formulas

Finally, False negatives (FN) are defective modules

incorrectly classified as non-defective. These can be put in a 2

× 2 matrix called confusion table. The most commonly used

criterions are precision, recall and F-measure defined by (11)

- (14). verall accuracy: Accuracy is the percentage of

correctly classified modules [7]. It is one of the most widely

used classification performance metrics.

Our proposed Algorithm 1 and 2 are used to compute the

hypothesis function and evaluators. In particular, Algorithm 1

computes hypothesis function while Algorithm 2 compares h

and Y values and then finally used to compute evaluators.

Algorithm 1 A Variant Variable Regularization Logistic Regression

(VVRLR)

Input: Files X and Y < split *.arff into two text files and convert True to 1

and False to 0>

Output: < J; Omega (norm); h >

1. add extra values of ones in the first column, to increase the number

of attributes by 1, (n+1)

2. Mu(i) = Mean(X); Std(X) = Standard Deviation(X);

3. for i ϵ (2,3,…,n) do

4.
(:,) ()

(:,)
()

X i Mu i
X i

Std i


 ;

5. end for

6.
exp()

1 exp()

Z
g

Z



 / Application of Sigmoid to compute individual

values

7. for i=1: Max-Iteration do

8. Omega = Initialize the size of X (I, :) to zeros;

9. Z = X * Theta;

10. H = g(Z); / Computing hypothesis function

11. J(i) = log(Logistic function) + (lambda’(2*m) *

norm(Omega[2:end]))^2; / Computing J __ for

convergence

12. G = gradient; H = Hessian matrix;

13. Theta = Theta - ; / Update for Omega

14. end for

15. Return J; Omega (norm); h;

Algorithm 2 Evaluator’s Computation

Input: < h and Y , Omega >

Output: < P >

1. h1 = zeros(size(h));

2. for i= 1:num1 (h) do

3. if h(i) >= 0.45 then

4. h(i)= 1;

5. end if

6. end for

7. Initialization of : FP, TP, TN, FN ; / Computation of confusion

matrix values

8. for l=1: num1 do

9. if Y (l) ==1 and h1(l) ==1 then

10. TP = TP + 1;

11. else if Y(l)== 1 and h(l) == 0 then

12. FN = FN +1 ;

13. else if Y==0 and h1(l) == 1 then

14. FP = FP + 1 ;

15. else TN = TN + 1;

16. end if

17. end if

18. end if

19. end for

20. Compute Evaluators (P) as follows:-

21. Total = TP+ FP+TN+FN;

22. Accuracy =
TP TN

Total


;

23.

 

   
()

TPR

TPR FPR

T
Precision AR

P

TP FP




 
  
 

 ;

24.

 

 1
()

TPR

TPRTPR

TP
Recall AR

FN TP




 
  
 

 ;

25.
 

 

()

()

()

()

1

() 2

1

TPR

FPR
TPR

TPR

FPR
TPR

TP

TP FPF measure AR
TP

TP FP

 
 
  
 

 
 
  
 



  





 
 
 
 
 
 
 

 ;

26. MAE =
FN FP

Total


 ;

27. Return P;

D. Experimental Setup

The datasets were loaded in turn into our model using

threshold values of 0.45; once when parameters j are

established, classification model can be employed according

to (1). LR gives us probabilities interpretation of class

membership in the range [0-1], thus at this point decision

threshold needs to be defined. Every value obtained from (1)

which is greater than 0.45 is treated as “1” i.e. instance

belongs to class and below threshold values is treated as “0”

i.e. instance does not belong to class. This process was done

for each of the four regularized values resulting in an initial 64

experiments.

After each run of the experiment we read the following

metric values: TP, FP, TN, FN, from our algorithms:

Algorithm 1 and Algorithm 2. We then proceeded to compute

Accuracy (Accy), Precision (Preci), Mean Average Error

(MAE), Recall, F-Measures (F-meas), and  (the norm of the

parameters) for each of the eight datasets by the application

of (11) - (14) and recomputed precision, recall and F-measure

with our proposed formulas (17) – (19).

We then compare our proposed model with three predictors

from the Weka algorithm suite. The eight datasets with

variable features used to carry out the empirical experiments

are shown in Table I; the three weka classifiers are;

BayesianLogisticRegression, Naïve Bayes and Simple

Logistic. Our proposed classifier model (algorithm) was

modeled using these omega (); 10^-4, 10^-6, 10^3 and

10^6 out of which we picked the one which yielded the best

results.

E. Outcomes of Experiments

In Table II we recorded the metric measures for our model

variable regularized logistic regression using the best values

for  = 10^-4 for the eight datasets: our main discussion was

on how best our model performed in terms of F-measure, the

harmonic mean of precision and recall which determines the

tradeoff between precision and recall; the 0.45 threshold gave

similar values of 94.97% and 100% as compared to the 0.5

threshold value for Ar1, Ar4 and Ar6 respectively and gave

100% recall for all three datasets at the 0.45 and 0.5

thresholds. While the datasets; Cm1, Kc2, Kc3, Mc2 and

Mw1 produced the following f-measure values from 50.00%

to 79.45% for  =10^-4.

Table III gives a summary of the performance of VVRLR

and Modified VVRLR with three weka algorithms applied in

this experiment in terms of accuracy and the F-measure

metrics. The summary shows that VVRLR performance

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

112

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

113

surpassed the three algorithms from Weka. Table III

compares our F-measure results with the three weka results;

Fig. 1 is the graphical representation of Table III; thus our

evaluator is said to have a higher performance than the three

weka algorithms. Fig. 1 depicts the weka algorithms, VVRLR

and modified VVRLR the last two which happens to be our

algorithms performed better compared to the three weka

algorithms.

TABLE II: CLASSIFICATION MODEL RESULTS FOR ʎ =10^-4

 Algorithm

Dataset

Accuracy in % F-Measure in %

Simple

logistic

Naïve

Bayes

Bayesian

Logistic

Regression

VRLR

Simple

logistic

Naïve

Bayes

Bayesian

Logistic

Regression

VRLR
OUR

VRLR

Ar1 92.56 85.95 92.56 99.17 0.00 32.00 0.00 94.74 90.00

Ar4 90.65 85.98 43.93 89.72 67.00 55.00 38.00 100 95.24

Ar6 89.11 85.15 87.13 95.05 42.00 44.00 24.00 100 93.75

Cm1 90.16 84.94 90.16 91.37 0.00 29.00 0.00 51.95 44.79

Kc2 84.48 83.72 20.50 84.29 52.00 50.00 34.00 55.91 60.03

Kc3 90.83 84.93 90.61 93.23 22.00 34.00 0.00 79.45 85.22

Mc2 77.64 73.91 49.07 86.34 57.00 46.00 53.00 79.25 93.44

Mw1 93.30 83.62 92.31 94.04 27.00 33.00 0.00 50.00 42.43

Mean value 88.59 83.53 70.78 91.65 33.38 40.38 18.63 76.41 75.61

TABLE III: CLASSIFICATION MODEL RESULTS FOR: ʎ =10^-4

Data- Thresh/ ʎ =10^-4

set Meas. TP FP TN FN Accy MAE Preci Recall Fmeas Norm-Ѳ

Ar1 0.45 9 1 111 0 0.9917 0.0083 0.9 1 0.9474 99.5445

 0.5 9 1 111 0 0.9917 0.0083 0.9 1 0.9474 99.5445

Ar4 0.45 20 0 87 0 1 0 1 1 1 153.4152

 0.5 20 0 87 0 1 0 1 1 1 153.4152

Ar6 0.45 15 0 86 0 1 0 1 1 1 141.3118

 0.5 15 0 86 0 1 0 1 1 1 141.3118

Cm1 0.45 20 8 441 29 0.9257 0.0743 0.7143 0.4082 0.5195 173.3848

 0.5 19 4 445 30 0.9317 0.0683 0.8261 0.3878 0.5278 173.3848

Kc2 0.45 52 27 388 55 0.8429 0.1571 0.6582 0.486 0.5591 31.36

 0.5 50 21 394 57 0.8506 0.1494 0.7042 0.4673 0.5618 31.3647

Kc3 0.45 29 1 414 14 0.9672 0.0328 0.9667 0.6744 0.7945 187.5752

 0.5 27 0 415 16 0.9651 0.0699 1 0.6279 0.7714 187.5752

Mc2 0.45 42 12 97 10 0.8634 0.1366 0.7778 0.8077 0.7925 34.53

 0.5 37 9 100 15 0.8509 0.1491 0.8043 0.7115 0.7551 34.5312

Mw1 0.45 12 5 367 19 0.9404 0.0596 0.7059 0.3871 0.5 14.18

 0.5 10 4 368 21 0.938 0.062 0.7143 0.3226 0.4444 14.1812

Fig. 1. Graphical representation of VVRLR, MVVRLR and weka

F-measures.

In this work we used logistic regression to model our

classifier VVRLR with original formulas and our proposed

formulas for precision, recall and F-measure, by using

variable regularization factors; out of which we obtained the

one which gave the best evaluator with a factor of
410 

We then subjected the same datasets to three algorithms from

Weka to check the performance of VVRLR and modified

VVRLR. Our experiments were performed using eight NASA

datasets from PROMISE repository. The following measures

were used to evaluate the performance of VVRLR: accuracy,

recall and F-Measure.

The experimental results showed that VVRLR and our

proposed modified VVRLR F-measure algorithm outclassed

the other three algorithms from weka algorithms.

In this work we considered small training/test datasets,

which gave us excellent results. Future research will consider

very large datasets in the thousand range set with more and

selected instances to achieve better results and consider

receiver operating characteristics curves using different

threshold.

REFERENCES

[1] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A comparative

study of pattern recognition techniques for quality evaluation of

VI. CONCLUSION AND FUTURE WORK

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

114

telecommunications software,” IEEE Journals of Selected Areas in

Communications, vol. 12, no. 2, pp. 279-291, Feb. 1994.

[2] L. C. Briand, V. R. Basili, and C. J. Hetmanski, “Developing

interpretable models with optimized set reduction for identifying

high-risk software components,” IEEE. Transactions on Software

Engineering, vol. 19, no. 11, pp. 1028-1044, Nov. 1993.

[3] J. C. Munson and T. M. Khoshgftaar, “The detection of fault-prone

programs,” IEEE. Transactions on Software Engineering, vol. 18, pp.

423-433, May 1992.

[4] J. C. Munson, A Handbook of Software Reliability Engineering, IEEE

Computer Society Press and McGraw-Hill Book Company, 1999.

[5] V. U. B. Challagulla, B. Farokh, I.-L. Yen, and A. P. Raymond,

“Empirical assessment of machine learning based software defect

prediction techniques,” in Proc. the 10th International Work Shop on

Object – Oriented Real-Time Dependable Systems, 2005, pp. 263-270.

[6] J. R. Quilan, C4.5: Programs for Machine Learning, SanMateo, CA:

Morgan Kaufmann Publishers, 1993.

[7] J. Han, and M. Kamber, Data Mining Concepts and Techniques, 2nd

edition, San Francisco: Morgan Kaufmann Publishers, 2006.

[8] J. Munson, Zander, and T. M. Khoshgoftaar, “The detection of

fault-prone programs,” in Proc. IEEE Transactions on Software

Engineering, vol. 18, no. 5, 1992, pp. 423-433.

[9] J. Munson, Zander, and T. M. Khoshgoftaar, “Regression modeling of

software quality: empirical investigation,” Journal of Electronic

Materials, vol. 19, no. 6, pp. 106-114, June 1990.

[10] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Transactions on Software

Engineering, vol. 33, no. 1, pp. 2-13, 2007.

[11] T. M. Khoshgoftaar and E. B. Allen, “The impact of costs of

misclassification on software quality modeling,” in Proc. Fourth

International Software Metrics Symposium, 1997, pp. 54–62.

[13] Y. Peng, G. Kou, Y. Shi, and Z. Chen, “A descriptive framework for

the field of data mining and knowledge discovery,” International

Journal of Information technology and Decision Making, vol. 7, issue

4, pp. 639-682, Dec. 2008.

[14] G. Graham, E. V. Veenendaal, I. Evans, and R. Black, “Foundation of

software testing: ISTQB certification,” Thompson Learning, United

Kingdom, 2007.

[15] N. E. Fenton and M. Neil, “A critique of software defect prediction

models,” IEEE Transactions on Software Engineering, vol. 25, no. 5,

pp. 675-689, 1999.

[16] B. Clark and D. Zubrow, “How good is the software: A review of defect

prediction techniques,” Carnegie Mellon University, USA, 2001.

[17] V. Nayak and D. Naidya, “Defect estimation strategies,” Patni

Computer Systems Limited, Mumbai, 2003.

[18] L. RadliRski, “Predicting defective type in software projects,” Polish

Journal of Environmental Studies, vol. 18, no. 3B, pp. 311-315, 2009.

[19] S. Bickel, M. Bruckner, and T. Scheffer, “Discriminative learning for

differing training and test distributions,” in Proc. the 24th

International Conference on Machine Learning, 2007, pp. 81–88.

[20] M. Staron and W. Meding, “Defect inflow prediction in large software

projects,” E-Informatica Software Engineering Journal, vol. 4, no. 1,

pp. 1-23, 2010.

[21] W. Tang and T. M. Khoshgoftaar, “Noise identification with the

kmeans algorithm,” in Proc. International 2004 Conf. Tools with

Artificial Intelligence (ICTAI), 2004, pp. 373-378.

[22] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Analyzing software

measurement data with clustering techniques,” IEEE Intelligent

Systems, Special Issue on Data and Information Cleaning and

Pre-processing, vol. 2, pp. 20-27, 2004.

[23] N. Fenton and M. Neil “A critique of software defect prediction

models,” IEEE Transactions on Software Engineering, vol. 25, no. 5,

pp. 675-689, 1999.

[24] T. M. Khoshgoftaar and M. Seliya “Tree-based software quality

estimation models for faul prediction,” in Proc. 2002 the 8th IEEE

International conference on Software Metrics, 2002, pp. 203-215.

[25] M. Halstead, Elements of Software Science, Elsevier, 1997.

[26] T. McCabe, “A complexity measure,” IEEE Trans. Software Eng, vol.

2, no. 4, pp. 308-320, 1976.

[27] T. Menzies, J. Destefano, A. Orrego, and R. Chapman, “Assessing

predictors of software defects,” in Proc. 2004 Workshop Predictive

Software Models, 2004.

[28] P. Singh, “Comparing the effectiveness of machine learning algorithms

for defect prediction,” International Journal of Information

Guang Chun Luo received his Ph.D. degree in

computer science from the UESTC in 2004. He is

currently a full professor of School of Graduate at the

UESTC in China. He has over seventy publications to

his name. His research interests include software

engineering, mobile networks and network security.

[12] Y. Peng, G. Kou, G. Wang, H. Wang, and F. Kou, “Empirical

evaluation of classifiers for software risk management,” International

journal of Information technology and Decision Making, vol. 8, issue

4, pp. 749-768, 1990.

Technology and Knowledge Management, vol. 2, no. 2, pp. 481-483,

2009.

[29] G. Hall and J. Munson, “Software evolution: Code delta and code

churn,” Journal of Systems and Software, p. 111, 2000.

[30] A. P. Nikora and J. Munson, “Developing fault predictors for evolving

software systems,” in Proc. IEEE Ninth Int’l Software Metrics

Symposium, pp. 338-350, 2003.

[31] T. M. Khoshgoftaar, E. B. Allen, F. D. Ross, R. Munikoti, N. Geol, and

A. Nandi, “Predicting fault-prone modules with case-based

reasoning,” in Proc. the 8th International Symposium of Engineering

(ISSRE’07), IEEE Computer Society, pp. 27-35, 1997.

[32] V. R. Basili, L. C. Brainde, and W. L. Melo, “A validation of object

oriented design metrics as quality indicators,” IEEE Trans Softw. Eng,

vol. 22, no. 10, pp. 751-761, 1996.

[33] T. M. Khoshgoftaar and N. Seliya, “Tree-based software quality

estimation models for fault prediction,” in Proc. the 8th IEEE

Symposium on Software Metrics, IEEE Computer Society, pp.

203-214, 2002.

[34] S. S. Gokhals and M. R. Lyu, “Regression tree modeling for the

prediction of software quality,” in Proc. the third ISSAT International

Conference on Rehabilitee and Quality in Design Anaheim, pp. 31-36,

1997.

[35] T. M. Khoshgoftaar and D. L. Lanning, “A neural network approach

for early detection of program modules having high risk in the

maintenance phase,” J Syst. Softw, vol. 29, no. 1, pp. 85-91, 1995.

[36] D. Azar, D. Precup, S. Bouktif, B. Kegl, and H. Sahraoui, “Combining

and adapting software quality predictive Models by genetic

algorithms,” in Proc. 17th IEEE International conference on

Automated Software engineering, 2002.

[37] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of

fault-proneness random forests,” in Proc. the 15th IEEE International

Symposium on Software Reliability Engineering (ISSRE), IEEE Press,

2004.

[38] D. Hosmer and S. Lemeshow, Applied Logistic Regression, 2nd ed.,

John Wiley & Sons, 2000.

[39] C. Bieza, V. Robles, and P. Larranaga, “Regularized logistic regression

without a penalty term: An application to cancer classification with

microarray data,” Expert Systems with Applications, vol. 38, pp.

5110-5118, 2011.

[40] M. Chapman, P. Callis, and W. Jackson. (2004). Metrics data rogram.

NASA IV and V Facility. [Online]. Available:

http://mdp.ivv.nasa.gov//(http://promise.site.uottowa.ca/SERepositor

y)

[41] T. M. Khoshgoftaar and E. B. Allen, “Logistic regression modeling of

software quality,” International Journal of Reliability, Quality and

Safety Engineering, vol. 6, pp. 303-317, 1996.

[42] MathWorks, “MATLAB: The language of technical computing,”

Desktop Tools and Development Environment, version 7, vol. 9,

MathWorks, 2005.

[43] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten, “Data mining

in bioinformatics using Weka,” Bioinformatics, vol. 20, pp.

2479-2481, 2004.

[44] M. Božić, M. Stojanović, Z. Stajić, and D. Vukić, “Power transformer

fault diagnosis based on dissolved gas analysis with logistic

regression,” Przegląd Elektrotechniczny, vol. 89, 2013.

Gabriel Kofi Armah received his BSc. in computer

science in 1997 from KNUST in Ghana and master

degree in MIS from University of Ghana in 2003.

Currently he is doing his PhD in software engineering at

UESTC in China.

His major field of study should be done a two year

compulsory national service in Ghana. He is a computer

science lecturer at the University for Development

Studies, Ghana. He has some publication to his credit. His research interests

include software engineering, algorithms, data mining using machine learning

and weka.

Ke Qin received his ME and Ph.D degrees from the

UESTC in 2006 and 2010 respectively. He was also a

visiting scholar at Carleton University, Ottawa, Canada

in 2008. He is currently an associate professor at the

UESTC, China. He has over forty publications to his

credit His research interests include chaos, chaotic

neural networks and nonlinear systems.

Angolo Shem Mbandu received his bed technology

degree from Moi University, Eldoret, Kenya in 1997.

He received his MSc information systems degree from

University of Nairobi, Nairobi, Kenya in 2009.

Currently, he is a PhD candidate in the Department of

Computer Science and Engineering at the University of

Electronic Science and Technology of China,

Chengdu, PRC. He is also a member of IACSIT

(Membership No. 80337496). His research interests are information security

and cryptography its applications.

Lecture Notes on Software Engineering, Vol. 4, No. 2, May 2016

115

