## The Co-operative University College of Kenya

## (A Constituent College of Jomo Kenyatta University of Agriculture \& Technology)

END OF SEMESTER EXAMINATIONS APRIL - 2015

## UNIT CODE: HCOB 2201

## UNIT TITLE: MANAGEMENT MATHEMATICS II

## DATE:

## TIME:

## INSTRUCTIONS:

Answer question ONE (compulsory) and any other TWO questions

## QUESTION ONE

a) A market survey is made on two brands of breakfast A and B. every time, a customer purchases, he may buy the same brand or switch to another brand. The transition matrix is given below

|  | To |  |
| :---: | :---: | :---: |
| From | A | B |
| A | 0.8 | 0.2 |
| B | 0.6 | 0.4 |

At present, it is estimated that 60 percent of the people buy brand $A$ and 40 percent buy brand B. determine the market shares of brand A and B in the steady state (7 Marks)
b) Some two commodities have the following demand and supply functions

$$
\begin{aligned}
& Q d_{1}=4-2 p_{1}+2 p_{2} \\
& Q d_{2}=6-2 p_{1}-2 p_{2} \\
& Q s_{1}=-3+p_{1} \\
& Q d s_{2}=-2+2 p_{2}
\end{aligned}
$$

Determine the equilibrium values of prices and quantities for the two commodities
c) Consider the following total cost function

$$
T C=\propto Q^{3}-b Q^{2}+C q+D \quad a, \mathrm{~b}, \mathrm{c}, \mathrm{~d}>0
$$

Find: -
i) The fixed cost (FC)
ii) The variable cost (VC)
iii) The average variable costs (AVC)
(2 Marks)
iv) The level of $Q$ at which the average variable costs are minimized
(4 Marks)
d) Three farmers A, B and C bought the following units of Jembes and Pangas for the ploughing and planting season

| Farmers | Jembes | Pangas |
| :---: | :---: | :---: |
| A | 50 | 7 |
| B | 30 | 4 |
| C | 40 | 5 |

The prices of a Jembe and a Panga are Kshs 30 and Kshs 80 respectively. Using Matrix method, find how much each one of the farmers spent on the Jembes and Pangas they bought
(6 Marks)

## QUESTION TWO

a) Find the derivatives of the following functions

$$
\begin{align*}
\text { i. } & y=\left(3 x^{2}+1\right)^{3}  \tag{3Marks}\\
\text { ii. } & y=\frac{x+1}{x^{2}+2 x+1}  \tag{3Marks}\\
\text { iii. } & y=\left(x^{2}+1\right)(x+4) \tag{3Marks}
\end{align*}
$$

b) A firm's total revenue and total cost are indicated below

$$
T R=40 x-8 x^{2}, T C=8+16 x-x^{2}
$$

i) Find the level of output at which total profit is a maximum (6 Marks)
ii) What price will be charged for (i) above?

## QUESTION THREE

a) Integrate the following functions with respect to x
i. $y=(2 x+4)^{2}$
ii. $y=\frac{1}{(x-5)^{3}} d x$
b) Evaluate: -
c) $\int_{1}^{2} \frac{2+6 x}{\left(2 x+3 x^{2}\right)^{3}} d x$
d) The demand equation of a firm's product is given by $P=-5 Q+3000$. The firm's total cost equation is given by $T C=50 Q+10000$. Determine
i. The quantity that maximizes revenue
ii. The quantity and price that maximizes profits
iii. The maximum profit

## QUESTION FOUR

a) Solve the following

$$
\begin{align*}
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10 \\
& 2 x_{2}+x_{4}=3 \\
& 3 x_{1}+2 x_{2}+x_{3}+x_{4}=7 \\
& \quad 4 x_{1}+x_{2}+x_{3}=6 \tag{10Marks}
\end{align*}
$$

b)

