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Abstract 
Rift Valley Fever and malaria are zoonotic and human diseases respectively that pose major production 
and health challenges to pastoralists. This study aimed to determine the spatiotemporal distribution of 
mosquito vectors of these two diseases in Baringo County, Kenya. A longitudinal study design was used 
to collect mosquitoes from twenty four sites. Rainfall seasonality was determined using rainfall data from 
the WorldClim database. Negative binomial and zero-inflated negative binomial regression models were 
used to determine the effect of rainfall seasonality and ecogeographical conditions on vector distribution. 
Spatio-temporal maps showing vector distribution were made using the sf package in R. Four Rift Valley 
Fever vector species and four malaria vector species were collected and were predominantly found in the 
lowland and riverine zones. Vector control interventions against the two diseases should therefore target 
these two zones. The study also recommends integrated vector management methods targeting both 
larval and adult stages. 
 
Keywords: Malaria, mosquitoes, rainfall seasonality, Rift Valley Fever, spatiotemporal distribution, 
vector control 

 
Introduction 
Rift Valley fever (RVF) and malaria are vector-borne diseases caused by the Rift Valley fever 
virus (RVFV) (Bunyaviridae: Phlebovirus) and Plasmodium parasite respectively [1, 2]. Four 
Plasmodium species are known to cause malaria in humans, namely Plasmodium falciparum, 
P ovale, P malariae, and P vivax with P. falciparum and P. vivax being responsible for most 
malaria cases [2]. 
RVF poses a threat to human and animal health and drastically reduces animal production. In 
animals, it causes high mortality in new-borns and mass abortion in pregnant animals causing 
massive economic losses [1, 3]. RVF was initially described in Kenya in 1930 and recurrent 
RVF epizootics have since been reported in countries in eastern and southern Africa, West 
Africa, North Africa, Madagascar, Mayotte, Comoros Islands, Saudi Arabia, and Yemen [4]. 
The first RVF outbreak occurred in Baringo County between October 2006 and March 2007 
and caused human and animal mortalities leading to massive economic losses [3, 5, 6].  
Despite the massive resource investment towards the control of malaria, the disease still affects 
millions of people in the world causing death and morbidity, especially in sub-Saharan Africa. 
In the year 2018, there were 228 million malaria cases reported worldwide, with mortality of 
405,000. Africa carried the majority of the global malaria burden with 93% of the global 
malaria cases and 94% of the global deaths [7]. In Kenya, malaria is among the leading causes 
of morbidity with approximately 3.5 million new clinical cases and 10,700 deaths each year [8]. 
Approximately 70% of the Kenyan population is at risk of malaria which accounts for 19% of 
outpatient consultations [9]. Baringo County lies in the seasonal malaria transmission 
epidemiological zone that experiences short periods of intense malaria transmission during the 
rainy season with a malaria prevalence of between 1-5% [9].  
Studies have reported relationships between climatic factors and RVF and malaria outbreaks 
stemming from the effect of climatic factors on the development of mosquito vectors. RVF 
epidemics are linked to floods that follow heavy rainfall in the wet seasons which leads to the 
hatching of RVFV infected Aedes mosquitoes that primarily transmit the virus to livestock [10]. 
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Peaks in malaria transmission are linked to seasonal changes 

in rainfall and temperature that affect the emergence of 

malaria vectors. An increase in malaria incidence with time 

lags of between 2 to 4 months after the onset of rainfall and 0 

to 1 months after an increase in temperature has been reported 
[11, 12]. Temperature influences mosquito development and the 

rate of sporogenic development of P. falciparum in 

mosquitoes [13]. The spatio-temporal variation in climatic 

factors that regulate vector and parasite development does 

therefore result in a variation of vector abundance and disease 

transmission dynamics. 

Although vector control is highly effective in preventing 

vector-borne disease transmission, the full potential of its 

benefits is yet to be realised in eradication of diseases. 

Compared to drugs and vaccines, vector control has greatly 

contributed to eradication of some vector-borne diseases, for 

example the use of sterile insect technique against tsetse flies 

in Zanzibar [14]. RVF control is still plagued with challenges, 

vector control is difficult to implement and vaccines are only 

available for animals [15, 16]. Malaria control emphasis has 

been placed on infection management using artemisinin-based 

combination therapies [17] and vector control using long-life 

insecticide-treated nets (LLITNs), indoor residual spraying 

(IRS), and larval source management (LSM) [17, 18]. However, 

the emergence of artemisinin resistance and insecticide 

resistance in plasmodium and mosquito populations is of 

concern to malaria control [19, 20]. 

Vector control is now focused on integrated vector 

management (IVM) which provides a conceptual framework 

for the deployment of cost-effective and sustainable methods 

of vector control. IVM allows for full consideration of the 

complex determinants of disease transmission, local disease 

ecology, anthropogenic risk factors and the socioeconomic 

status of affected communities [21]. Comprehensive knowledge 

of vector biology, vector parasite interaction and 

spatiotemporal distribution of both vector and pathogen are 

key to improving IVM approaches for vector control and 

disease eradication [20, 22].  

The aim of this study was to determine the spatiotemporal 

distribution of RVF and malaria vectors, specifically, the 

seasonal variation in the distribution of mosquito vectors 

across different ecogeographical zones. Results of the study 

are presented with an inference on the benefits of a 

transdisciplinary approach towards the concerted control of 

RVF and malaria vectors in identified transmission foci. The 

benefits of such an approach include cost-effectiveness, a 

reduction of vector population densities and reduced 

transmission and infection rates leading to a healthy 

population and increased animal productivity. 

 

Materials and Methods 

The study area 

The study was carried out in Baringo County, Kenya, which 

lies between longitudes 35.59680 E and 36.23380 E, and 

latitudes 0.12180 N and 0.85580 N. It is part of the semi-arid 

zones of Kenya and is inhabited by resource-poor pastoralist 

communities. The area has poor infrastructure and 

experiences a harsh climate characterized by low rainfall and 

high temperatures (Ojwang, Agatsiva and Situma, 2010). This 

area is prone to VBDs like malaria, RVF, leishmaniasis, and 

yellow fever. which not only cause morbidity and mortality in 

humans but in the case of zoonoses also cause animal deaths 

leading to serious economic losses.  

The study area was divided into four zones based on 

hydrology, altitude, vegetation cover, soil types and 

precipitation The four zones from east to west were a low-

altitude zone surrounding the permanent water bodies with an 

altitude of below 1,000 m above mean sea level, a mid-

altitude zone with an altitude of between 1,000 - 1,500 m 

above mean sea level, a highland zone with an altitude 

between 1,500 - 2,300 m above mean sea level and a riverine 

zone bordering the Kerio River with an altitude of 1,100 - 

1,200 m above mean sea level. 

The permanent water bodies in the lowland zone are Lake 

Baringo, Lake 94, and Lake Bogoria. This area receives an 

annual rainfall of about 600 mm and has a slope of less than 

4% with poorly drained soils, making it prone to seasonal 

flooding. The main vegetation cover is the invasive Prosopis 

juliflora locally known as the mathenge tree. 

The mid-altitude area is interspaced with dry riverbeds (lagas) 

that flow only after the heavy seasonal rains in the Tugen 

Hills. The slope here is between 20 and 30% and the main 

vegetation cover is Acacia and Commiphora bushes.  

The highland area comprises of the Tugen Hills. This area has 

very well-drained soils that support indigenous forests as well 

as planted exotic forests that grow on the generally steep 

terrain that has a slope range of 30-40%. Rainfall ranges 

between 1,000 and 1,500 mm per annum.  

The riverine zone borders the Kerio River and has several 

oxbow lakes, the prominent one being Lake Kamnarok. This 

zone is prone to flooding because the elevation of the slope is 

less than 6%. 

 

http://www.dipterajournal.com/


International Journal of Mosquito Research http://www.dipterajournal.com 
 

40 

 
 

Fig 1: Map of the study area. (1a) Location of Baringo County within Kenya, (1b) the sub-county administrative units within Baringo County 

with the study area shaded out green, and (1c) the ecological zones within the study area, sampling sites and the 2006-2007 RVF outbreak 

points. 

 

Research design and sampling procedure 

Mosquitoes were sampled based on a longitudinal study 

design where mosquito samples were collected monthly from 

24 randomly selected sites within the study area (six sites per 

zone). Purposive sampling technique was used to identify 

mosquito sampling points. The random points tool in 

Quantum GIS software (Quantum GIS Development Team, 

2016) was used to generate 100 random points. These points 

were converted to a Keyhole Markup Language file (. KML) 

and exported into Google Earth to help in the identification of 

points that were close to water bodies and easily accessible by 

road. Six sites situated near water bodies like lakes, springs, 

rivers, pan dams, and irrigation canals were chosen in each of 

the four zones making a total of 24 sampling sites (Figure 1c). 

Monthly sampling expeditions were conducted during which 

adult mosquitoes were collected from the 24 sites. The spatial 

coordinates of all sampling points were recorded to enable 

spatial analysis.  

Adult mosquitoes were collected between June 2015 and 

April 2016 Adult collections were done indoors and outdoors. 

Indoor sampling was done from houses near the breeding sites 

using pyrethrum spray catches made up of 10 ml pyrethrin 

dissolved in 5 litres of kerosene. Spraying was done in the 

morning between 06:00 and 08:00 h. White sheets were 

spread inside the house before spraying. Ten minutes after 

spraying, dead and immobilized mosquitoes were collected 

from the sheets. Outdoor collections were done using CDC 

light traps that were set overnight, between 18:00 and 06:00 h. 

The collected mosquitoes were brought back to the field 

laboratory for identification using dichotomous taxonomic 

keys (23). After identification, known RVF and malaria 

vectors were grouped into two categories either as RVF or 

malaria vectors. Collections from each month were then 

grouped as having been collected from the rainy season or the 

dry season. 

Determining climate seasonality 
Climate seasonality was determined using rainfall data of the 
study area between January 2015 and December 2016 
obtained from the WorldClim database [24]. This dataset 
contains historical climate data from 1969 to 2018 available 
as raster files and has three variables namely minimum 
temperature (°C), maximum temperature (°C) and 
precipitation (mm). The geographical coordinates of the 
sampling points were used to extract point data from the raster 
files. Spatial averages were then determined by points data 
across each ecogeographical zone to produce a 24-month time 
series of rainfall data. Monthly anomalies of the time series 
were calculated by subtracting the monthly rainfall values 
from the 24-month average. Months with a positive anomaly 
were classified as belonging to the rainy season, while those 
that had a negative anomaly value were determined as 
belonging to the dry season. 

 

Data analysis 

Distribution of mosquitoes across zones  
For each category of vectors, a GTest was performed using 
the R statistical package to test the null hypothesis that the 
distribution of individual vector species across the four 
ecogeographical zones was the same. 

 

Testing spatio-temporal variation in the abundance of 

RVF and malaria vectors  
To choose the best model for analysing the spatiotemporal 
variation of vectors exploratory data analysis was done to 
determine the distribution of the data and the presence of 
overdispersion. The distribution of the data was determined 
by plotting histograms for both the RVF and malaria datasets. 
Overdispersion was tested using the dispersiontest function of 
the AER library in R.  
To test the seasonal distribution of the vectors across the eco-
geographic zones, negative binomial (NB) regression and
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zero-inflated negative binomial (ZINB) regression analyses 
were used. The ZINB model is a two-part model that uses a 
negative binomial regression and a logistic regression. 
Through the negative binomial part, the ZINB can test the 
effect of the predictors on the frequency of the vectors while 
the logistic part can test the effect of the predictors on the 
presence or absence of the vectors. The predictor variables 
used in the models were ecogeographic zones and season of 
vector collection. Ecogeographic zones had four levels while 
season had two levels. Between them, the regressors 
accounted for environmental and climatic factors associated 
with vector ecology. The Vuong test function in the pscl 
package of R was used to compare the performance of a 
negative binomial (NB) regression model to a zero-inflated 
negative binomial (ZINB) regression model. 

Spatio-temporal maps showing the distribution of RVF and 

malaria vectors were developed using the sf package in R. 

The study performed GTest to determine if there was a 

difference in the spatiotemporal distribution of RVF and 

malaria vectors across zones and seasons. The null hypothesis 

tested was that the distribution of RVF and malaria vector 

species across the four ecogeographical zones was the same.

Choropleths depicting the seasonal distribution of RVF and 

malaria vector were developed using vector counts scaled to 

natural Jenk breaks implemented by Fisher-Jenks algorithm in 

R. 

 

Ethical statement 

The study acquired both national and the World Health 

Organization (WHO) ethical clearance referenced 

P70/02/2013 and Protocol ID B20278 respectively. Consent 

was sought from the house owners before the spraying 

exercises commenced.  
 

Results 

Climate seasonality 

Rainfall in the study area was trimodal. The rainy months 

spanned from April to May, July – August and November – 

December, while the dry months were January – March, June, 

and September –October (Figure 2). For regression analyses, 

mosquito samples collected during the dry months were 

classified as collected in the dry season and those collected 

during the rainy months were classified as collected in the 

rainy season. 

 

 
 

Fig 2: Rainfall anomalies in the eco-geographical zones. Months with negative anomalies received less than the annual average rainfall while 

those with positive rainfall anomalies received more than the average annual rainfall. 

 

Collected mosquitoes 

A total of 12,186 adult mosquitoes were collected from the 

study area. The identified mosquitoes belonged to 35 species 

from 9 genera. Collected RVF vectors included Culex pipiens 

s.l. (3,985 adults), Culex univitattus (278 adults), Mansonia 

africana (397 adults), and Mansonia uniformis (543 adults). 

Cx. pipiens s.l. was collected from 19 sites, Cx. univitattus 

from 16 sites, Ma. africana from 14 sites and Ma. uniformis 

from 17 sites. Collected malaria vectors included Anopheles 

gambiae (5410), Anopheles pharoensis (283), Anopheles 

coustani (325) and Anopheles funestus (69 adults) which 

transmit malaria. The distribution of the vectors across the 

eco-geographical zones is given in Table 1. GTests for equal 

distribution of RVF and malaria vectors across the eco-

geographical zones showed that the vectors were not equally 

distributed (G = 644.39, X-squared df = 9, p-value < 0.001 

and G = 235.41, X-squared df = 9, p-value < 0.001 

respectively.) 

Table 1: The spatial distribution of RVF and malaria vectors across 

eco-geographical zones in the study area. 
 

Species Lowland 
Mid-

altitude 
Highland Riverine 

Disease 

transmitted 

Culex pipiens s.l. 3652 197 197 132 RVF 

Culex univitattus 164 5 5 107 RVF 

Mansonia africana 297 2 2 95 RVF 

Mansonia uniformis 359 39 39 137 RVF 

An. coustani 296 7 0 22 Malaria 

An. funestus 12 0 0 57 Malaria 

An. gambiae 4292 40 25 1053 Malaria 

An. pharoensis 269 0 0 14 Malaria 

 

Regression analysis of the vector count data 

Histograms of the frequency distribution of RVF and malaria 

data collected from the study showed the data was zero-

inflated and right-skewed, and could not be analysed by 

methods that assume normality of data. This is depicted by 

bar plots plotted using natural Jenk breaks as bins for the 
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count categories (Figure 3). The data was also overdispersed 

as the variances were significantly greater than the means for 

RVF data (z = 2.7216, p-value = 0.003248, overdispersion 

estimate = 63.41), and malaria data (z = 2.68, p-value = 

0.00368, overdispersion estimate = 181.242).  

 

 
 

Fig 3: Frequency distribution plots malaria and RVF vectors. Exploratory data analysis revealed that the vector frequency distribution was zero-

inflated. 

 

Reggression models for RVF vectors  

The NB model for the RVF data showed that the lowland and 

midaltitude zones, and the rainy season had significant 

coefficients, and therefore, significantly influenced the 

distribution of the RVF vectors (Table 2). The highland zone 

and the dry season served as the reference groups. The 

incident rate ratios for the occurrence of RVF vectors were 

obtained by exponentiating the coefficients obtained from the 

NB model. The incident rate ratio for the occurrence of RVF 

vectors in the lowland zone was 5.3 times more (p = 0.001) 

than in the highland zone and 0.07 times more in the midland 

zone compared to the highland zone (p < 0.0001). RVF vector 

occurrence was 2776 times more (exp 7.2929) in the rainy 

season compared to the dry season (p = 0.023).  

The ZINB model predicted significant effects for lowland and 

midland zones but with different coefficients. However, the 

effect of the rainy season was not significant for this model 

(Table 2). The coefficients of the binomial component of the 

ZINB model were all non-significant. 

 
Table 2: Regression coefficients for the three regression models performed to test the effect of ecogeographic zones and seasons on the 

distribution of RVF vectors. The levels of significance are indicated by asterisks where ‘***’ = p-value < 0.0001 and ‘*’ = p-value <0.05. 
 

Coefficients NB Model ZINB Model: Count model coefficients (negbin with log link) 

 
Estimate Pr(>|z|) Estimate Pr(>|z|) 

(Intercept) 1.647 3.05e-05 *** 1.971 3.81e-06 *** 

Zone-lowland 1.613 0.001 *** 1.894 0.0001 *** 

Zone-mid-altitude -2.633 2.05e-06 *** -2.757 2.34e-07 *** 

Zone-riverine 0.642 0.178 0.449 0.299 

Season-rainy 7.929 0.023 * 0.45 0.233 

log(theta) 
  

-6.725 1.76e-11 *** 

ZINB Model: Zero-inflation model coefficients (binomial with logit link): 

(intercept) 
Estimate Pr(>|z|) 

-1.52 0.298 

zonelowland 1.344 0.384 

zonemid-altitude -17.248 0.999 

zoneriverine -11.389 0.984 

seasonrainy -11.708 0.985 

 

Regression models for malaria vectors 

The NB model for malaria vectors showed that the lowland 

and riverine zones, and the rainy season had significant 

coefficients, and therefore, significantly influenced the 

distribution of malaria vectors (Table 3). The highland zone 

and the dry season served as the reference groups. Incident 

rate ratios for the occurrence of malaria vectors were 

determined by exponentiating the coefficients obtained from 

the NB model. The incident rate ratio for the occurrence of 

malaria vectors in the lowland zone was 144 times more (exp 

4.972) than in the highland zone (p < 0.0001) and 36 times 

more (exp 3.588) in the riverine zone compared to the 

highland zone (p < 0.0001). The effect of seasonality on the 

occurrence of malaria vectors was not significant.  

The coefficients of the binomial part of the ZINB models for 

both RVF and malaria vectors were all non-significant 

indicating that the logistic part of the models did not 

successfully predict the absence of the vectors; the zeroes in 

the data sets were not due to non-existence of the vectors in 

the sampling points suggesting that they could have simply 

been missed in the sampling effort. 
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Table 3: Regression coefficients for the three regression models performed to test the effect of ecogeographic zones and seasons on the 

distribution of malaria vectors. The levels of significance are indicated by asterisks where ‘***’ = p-value < 0.0001 and ‘*’ = p-value <0.05. 
 

Coefficients: NB Model ZINB Model: Count model coefficients (negbin with log link) 

 
Estimate Pr(>|z|) Estimate Pr(>|z|) 

(Intercept) -0.258 0.58 0.476 0.495 

zonelowland 4.972 < 2e-16*** 4.405 2.85e-07*** 

zonemid-altitude 0.612 0.297 -0.096 0.908 

zoneriverine 3.588 6.01e-11*** 2.983 0.0003*** 

seasonrainy 0.243 0.518 0.164 0.712 

Log(theta) 
  

-1.222 1.71e-09*** 

Zero-inflation model coefficients (binomial with logit link): 

(Intercept) 
Estimate Pr(>|z|) 

0.670 0.495 

zonelowland -2.386 0.085 

zonemid-altitude -11.298 0.968 

zoneriverine -2.581 0.131 

seasonrainy -1.266 0.327 

 

A comparison of the performance of the NB model (model 1) 

to the ZINB model (model 2) regression for both RVF and 

malaria vectors showed that the NB model performed better 

than the ZINB model (Table 4), the spatiotemporal 

distribution of the evectors is better explained using the NB 

model. 

 
Table 4: Vuong Non-Nested Hypothesis Test-Statistic: Test-statistic is asymptotically distributed N(0,1) under the null that the models are 

indistinguishable. 
 

Vector Category Vuong Test z-statistic Alternate hypothesis p-value 

RVF Raw -1.435 model2 > model1 0.076 

 BIC-corrected 2.597 model1 > model2 < 0.001 

Malaria Raw -1.075 Model 2 > Model 1 0.14 

 BIC-corrected 6.062 Model 1 > Model 2 < 0.001 

 

For both RVF and malaria models, the raw test shows that the 

ZINB model does not perform better than the NB model (p > 

0.05). This conclusion is supported by the BIC-corrected 

model which shows the NB model performs better than the 

ZINB model (p < 0.05).    

 

Spatiotemporal Risk Maps of RVF and Malaria Vectors 

Vectors of the two diseases were more abundant in the rainy 

season compared to the dry season (G = 499.38, X-squared df 

= 3, p-value < 0.0001 for RVF and G = 351.27, X-squared df 

= 3, p-value < 0.0001 for malaria).  

The abundance of RVF vectors is shown in figure 4. The 

highest abundance of RVF vectors during the rainy season 

was in the lowland zone. During the dry season, there was a 

shift in the abundance of mosquitoes, the highest count was 

recorded in the riverine zone and not the lowland zone. The 

midland zone had the lowest abundance of RVF vectors in 

both seasons.  

 

 
 

Fig 4: Abundance of RVF vectors across the geographic zones during the rainy and dry seasons. In both seasons, vector abundance is higher the 

lowland and riverine zones compared to the highland and riverine zones. However, in the dry season, RVF vector abundance is highest in the 

riverine zone compared to the rainy season. Note: the legends of Figures are not on the same scale, therefore comparisons should not be made 

between the figures 
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The abundance of malaria vectors is shown in figure 5. In 

both seasons, malaria vectors were most abundant in the 

lowland zone, followed by the riverine zone. The highland 

and mid-altitude zones had very few mosquitoes (Figure 5). 

 

 
 

Fig 5: Abundance of malaria vectors across the eco-geographical zones during the rainy and dry seasons. In both seasons, vector abundance is 

high in the lowland and riverine zones compared to the highland and mid-altitude zone. However, as indicated by the legends, malaria vectors 

are more abundant during the rainy season compared to the dry season. Note: the legends of Figures are not on the same scale, therefore 

comparisons should not be made between the figures. 

 

Discussion 

Results from the study shows that the abundance of mosquito 

vectors to the two diseases is climate sensitive, increasing the 

risk of transmission during the rainy seasons. The study also 

identifies the lowland and the riverine eco-geographic zones 

as the possible focal points of RVF and malaria transmission. 

This is supported by studies during the 2006-2007 RVF 

outbreaks [5, 6, 2] and investigations into malaria incidence [26, 

27]. Intervention strategies on vector control against these two 

diseases should be focus on the lowland and the riverine 

ecogeographic zones.  

The spatial distribution of RVF and malaria vectors is 

restricted to the lowland and riverine eco-geographic zones. 

These two zones possess a blend of climatic, vegetation, and 

landscape factors that increase the abundance of vectors in the 

form of permanent water bodies that serve as mosquito 

breeding sites, dense vegetation and a stable climate 

seasonality. Previuos studies reported the presence of flood-

prone soils with 90% flat topography in the lowland zone as 

the most influential environmental predictors of RVF vector 

occurrence in the lowland zone [28], a combination of climatic 

and vegetation greenness threshold associated with malaria 

transmission [29] and a positive correlation between malaria 

vectors abundance and rainfall in some parts of the study area 
[30]. 

The temporal distribution of the vectors differed with more 

mosquitoes being collected in the rainy season compared to 

the dry season. This finding is supported by other studies that 

have investigated seasonal trends of mosquito abundance [10, 

30, 31]. The rainy season is comprised of the moths of April - 

May, July - August, and November - December, implying and 

increased risk of RVF and malaria transmission during these 

months in the lowland and riverine zones.  

Knowledge of the spatiotemporal distribution of RVF and 

malaria vectors is crucial in implementing vector control as a 

disease prevention strategy. Vector control interventions can 

target the lowland and riverine zones that have a high vector 

abundance of mosquito vectors and it can be timed to coincide 

with rainy seasons. Indeed, malaria cases in Baringo County 

have been reported to increase with rainfall with a time lag of 

2 months [11]. Malaria prevalence in the study area has been 

reported as being highest in the riverine zone [26]. 

Interventions like the supply of long-lasting insecticidal nets, 

indoor residual spraying and larval source management in the 

lowland and riverine zones can be timed to coincide with the 

rainy season. The lowland zone has been the focal point of 

previous interventions, has received malaria control 

interventions thereby reducing malaria prevalence. Such 

interventions should be extended to the riverine zone to 

reduce the currently high malaria prevelance. 

Inter-epidemic RVF surveillance in Baringo County has 

reported a seroprevalence rate of 5.6% in ruminants [32] and no 

detection of RVF seroprevalence in human populations [33]. 

The main RVF intervention strategy has always been the 

vaccination of animals and quarantines to control movement 

of animals at the onset of outbreaks [15]. However the cost of 

the exercise is enormous, and with the functions of the 

Ministry of Agriculture, Livestock and Fisheries being 

devolved from the national to the county governments in the 

new governance structure in Kenya [34], it is a challenge for 

the county governments to implement.  

Current mosquito vector control interventions are used against 

malaria only. The use of an IVM approach can augment the 

use of LLINs and IRS against malaria, and it can have the 

benefit of reducing the abundance of mosquito vectors of 

other diseases. IVM approaches can be extended to non 

chemical methods such as house modification to reduce 

mosquito access through the eaves of houses, use of attractive 

sugar bait traps, use of mosquito repellants based on 

indegenious knowledge on plants with mosquito repellent 
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properties, and changes in sociocultural behaviour that 

increase malaria risk can greatly reduce malaria transmission.  

Since RVF outbreaks occur following the mass emergence of 

transovarially infected Aedes mosquitoes, the best IVM 

approach should be one that focuses on LSM using eco-

friendly larval growth inhibitors and microbial larvicides. 

Trapping of adult stage mosquitoes using attractive sugar 

baits can also augment the use of LSM. Aedes mosquitoes are 

known to transmist other arboviruses that cause febrile 

illnesses, for example, the Semliki Forest virus and 

Chikungunya virus both of which are present in Baringo 

County.  

Through desigining IVM protocols targeting mosquito vectors 

of multiple diseases such as used in the “One Health” 

approach, a single a single IVM effort against a multidisease 

vector is cost effective. The use of emerging vector control 

methods like sterile insect technique in mosquitoes and the 

CRISPR-cas9 gene editing technique in mosquito populations 

also provide an opportunity that can be employed in the near 

future to reduce the risk of RVF and malaria transmission. 

The success of vector control against transmission of these 

two diseases should also be guided by evidences from other 

fields relevant to understanding the epidemiology of the two 

diseases, for example, climate science, genetic epidemiology, 

vector biology and medical anthropology. Respectively, 

contributions from such fields will help in understanding 

impact of climate change on IVM, track insecticide resistance 

in vector populations, understand target points in the life 

cycles of vectors where IVM is most effective and willingness 

of local populations to take up innovative vector control 

methods.  

 

Conclusion 

This paper presents evidence of spatiotemporal differences in 

the distribution of RVF and malaria vectors attributable to 

environmental and climatic variation. These spatiotemporal 

differences in vector abundance and their correlation to 

documented disease incidences identify two ecogeographic 

zones as focal points for RVF and malaria transmission. The 

findings can therefore be used to design IVM strategies to 

minimise the transmission of RVF and malaria in the two 

ecogeographic zones of Baringo County. 
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