

THE CO-OPERATIVE UNIVERSITY OF KENYA

END OF SEMESTER EXAMINATION DECEMBER -2022

EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE, INFORMATION TECHNOLOGY

(YR III SEM I)

UNIT CODE: BCSC 3128

UNIT TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

DATE: WEDNESDAY, 21ST DECEMBER, 2022

TIME: 2:00 PM – 4:00 PM

INSTRUCTIONS:

• Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

- (a) Declare an Array in C, named balance of data type double for ten elements as implied in the Design and analysis of Algorithm. (3 Marks)
- (b) Discuss any THREE classification of Data Structures as implied in the Design and analysis of Algorithm. (3 marks)
- (c) You have been invited to give a talk to diploma students in Cooperative University, Nairobi campus. Your presentation ought to cover the different categories of the compound data structures. Discuss **THREE** operations of one of the compound data structure category you presented.
 (3 marks)
- (d) You are doing a group project presentation on sorting techniques in the Design and analysis of Algorithm. Answer the following question.
 - i. Explain what you understand by sorting techniques in the Design and analysis of Algorithm. (2 marks)
 - ii. Describe one type of sorting algorithm you are familiar with. (2 marks)
 - iii. Provide an Algorithm for the sorting algorithm you provided above and its time complexity. (3 marks)
- (e) Describe the Selection Sort by aid of an Algorithm.
- (f) Discuss why Insertion Sort is considered as an incremental algorithm. (3 marks)
- (g) Study the algorithm program provided below

Program Statements for k =1 to n do x = x + 2; end; (3 marks)

Provide the total frequency count of the above program. Show how you arrived at the total frequency count. (3 marks)

(h) Define a tree as implied in the Design and analysis of Algorithm. (2 marks)

(i) Explain any difference between Trees and the Breadth First Traversal for a Graph as implied in the Design and analysis of Algorithm. (3 marks)

QUESTION TWO

- (a) Explain any **TWO** possible ways of representing Binary Trees as implied in the Design and analysis of Algorithm. (4 marks)
- (b) Describe any **THREE** methods of traversing a Tree as implied in the Design and analysis of Algorithm (3 marks)
- (c) Discuss the **THREE** advantages of Linked List over Arrays as implied in the Design and analysis of Algorithm. (3 marks)
- (d) Explain any **TWO** types of Linked Lists in the Design and analysis of Algorithm. (4 marks)
- (e) Explain **TWO** Operations of the stack data structure in the Design and analysis of Algorithm
 - (4 marks)
- (f) Describe **TWO** applications of Depth First Search in the Design and analysis of Algorithm.

```
(2 marks)
```

QUESTION THREE

γv		
(a)	Present FOUR properties of Binary Trees as implied in the Design and analysis of Alg	gorithm
		(4 marks)
(b)	Illustrate a Balanced Binary Tree as implied in the Design and analysis of Algorithm.	
		(4 marks)

(c) Pointers are an intimate part of C and separate it from more traditional programming languages.
 Pointers make C more powerful by allowing a wide variety of tasks to be accomplished.
 Highlight **THREE** functions that Pointers enable us to achieve in the Design and analysis of Algorithm. (3 Marks)

- (d) You are doing a project group presentation on different approaches to design an Algorithm. Answer the following questions based on your project presentation.
- i. Explain the structure of an Algorithm you alluded to in your presentation. (3 marks)
- ii. Discuss any **THREE** properties of the Algorithm presented to your audience. (3 marks)
 - Explain any **THREE** practical design issues of the Algorithm you presented. (3 marks)

QUESTION FOUR

(a) Represent the algorithm/pseudo code of the insertion sort.	(3 marks)
(b) Explain any THREE kinds of problems in the community that can be solved	by the algorithms.
	(3 marks)
(c) Discuss why an Algorithm is considered as a technology in Data Structures a	and Algorithms.
	(2 marks)
(d) Provide any THREE reasons why we analyze algorithms.	(3 marks)
(e) Describe any THREE common computing times used in analyzing algorithm	ns. (3 marks)

(f) Study the algorithm program provided below.

Provide the total frequency count of the above program. Show how you arrived at the total frequency count. (2 marks)

(g) Discuss TWO differences between Recursion and Iteration Algorithm.	(2 marks)
(h) Describe the Time Complexity of Linear Search algorithm.	(2 marks)