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Abstract: In Africa, Cancer is an emerging health problem where in 2012 new cancer cases were about 847,00 and around 

519,00 deaths, three quarters of those deaths occurred in sub-Saharan region. In 2018, cancer was ranked as the third leading 

cause of deaths in Kenya after infectious and cardiovascular diseases. In 2018 cancer incidences were estimated to be 47,887 new 

cancer cases and 32,987 deaths. According to data from World Health Organization in 2020, cervical cancer is the second most 

prevalent cancer among women while breast cancer is the first. In this study, data collected by the Nairobi Cancer Registry (NCR) 

was used to produce spatial-temporal distribution of the cervical cancer in counties in Kenya. The results showed that counties 

where data was available among them Embu, Meru, Machakos, Mombasa, Nyeri, Kiambu, Kakamega, Nairobi and Bomet 

respectively had high risk of cervical cancer. Availability of county-based estimates and spatial-temporal distribution of cervical 

cancer cases will aide development of targeted county strategies, enhance early detection, promote awareness and 

implementation of universal coverage of major control interventions which will be crucial in reducing and halting the rising 

burden of the cancer cases in Kenya. In counties where data was not available the model showed relative risks for cervical cancer 

disease was minute but it was present, therefore spatial temporal models are very appropriate to estimate relative risks of diseases 

even when there is a small sample (and possibly without a sample) in a given area by borrowing information from other 

neighboring regions. 

Keywords: Small Area Estimation, Spatial Temporal, Integrated Nested Laplace Approximation,  

Generalized Linear Mixed Models 

 

1. Introduction 

Cancer arises when normal cells transforms into tumour cell 

in various stages from pre-cancerous lesion to a malignant 

tumour. According to the International Agency for Research 

on Cancer (IARC), in 2018 the global new cancer cases was 

estimated to be 18.1 million and approximately 9.6 million 

deaths. In Africa, Cancer is an emerging health problem where 

in 2012 new cancer cases were about 847,00 and 519,00 

deaths, three quarters of those deaths occurred in sub-Saharan 

region. In 2018, cancer was ranked as the third leading cause 

of deaths in Kenya after infectious and cardiovascular diseases. 

The annual incidence of cancer in Kenya was estimated to be 

47,887 new cancer cases, with an annual mortality 32,987 in 

2018 [6]. 

Among women cervical cancer is the fourth prevalent 

cancer worldwide [27]. According to data from World Health 

Organization in 2020, in Kenya breast cancer in the most 

prevalent followed by cervical cancer among women [1]. 

Human papillomavirus (HPV) infection which is transmitted 

through direct contact is the cause of almost all cervical 

cancers [9]. According to Schiffman et al. [25] sexually 

transmitted HPV genotypes, notably HPV16 cause virtually 

all cervical cancers world-wide if not controlled 

immunologically or by screening. The control strategies for 
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cervical cancer includes early screening, vaccination against 

HPV, treatment of pre-cancerous lesions, diagnosis and 

treatment of invasive cervical cancer and palliative care [28]. 

Cervical cancer screening aides in detection of 

abnormalities which can be treated and pre cancers which may 

progress into actual cancer thus reducing cervical cancer 

incidences, deaths and morbidity related to treatment [25]. 

Spatial temporal components of events associated with time 

and location can be utilized to reveal aspects related to where 

and when the events occurred. Cervical cancer is an event 

associated with time and space (location) therefore analysis 

can be conducted to determine the trends, spread and patterns 

to develop ways to halt its spread [20]. This research project 

presented a spatial temporal approach to analyze spatial 

dynamics of the cervical cancer cases in Kenya over two years 

(2015 and 2016) in ten counties namely Bomet, Embu, 

Kakamega, Kiambu, Machakos, Meru, Mombasa, Nairobi, 

Nakuru, and Nyeri County. 

Generating spatial or spatial-temporal maps by mapping 

cancer rates may help to identify distribution of cervical 

cancer in different geographical locations. Identification of 

areas with high disease burden helps in prioritization of 

control efforts and interventions leading to change of risk 

behaviours [12]. 

The study main aim was to determine cervical cancer 

hotspots by density analysis, and evaluate the trend of spatial 

correlation for the distribution of cases in Kenya from 

counties with available data. 

2. Materials and Methods 

The study focused on cervical cancer data collected from 

different counties for a period of two years (2015 and 2016) by 

Kenya National Cancer Registry, which is a national 

Population-Based Cancer Registry (PBCR) that provides high 

quality cancer surveillance data which includes incidences, 

mortality, and survival information of cancer patients. 

Kenya has area of 582,650 km square and is divided into 47 

counties (See Figure 1) and has population of 47.5 Million 

people as per the census conducted in 2019 by Kenya National 

Bureau of Statistics (KNBS). 

 

Figure 1. Kenya Administrative Units. 
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3. Methodology 

According to Chandra [7] Small Area Estimation is a 

twofold problem. First is how to obtain reliable estimates 

based on data obtained from small areas where some have 

empty samples and others with very small samples. The 

second question is how estimation error is to be assessed. 

Survey data can be used to estimate indicators of small areas 

with small samples sizes or empty samples. Direct estimators 

of indicators in small areas might have large sampling errors, 

their estimation is improved by introducing regression models 

which provides a relation between independent and dependent 

variables of interest. Small area estimation is applied in 

modelling data from this form of non- planned domains (small 

areas) [2]. Small Area Estimation methods are divided into 

area and unit level small area models [22]. 

Gómez-Rubio et al. [11] noted that, fitting Bayesians 

models using available in-samples data (samples where data is 

available) can provide reliable estimates for off-samples areas 

(where data was not available), area level covariates can be 

included in calculation of the estimates when available. The 

estimates maybe less accurate as compared when the survey 

data is available for each area, but they are reasonable since 

they have lower bias. To model large-scale spatial patterns and 

with very sparse data, spatial random effects are included at 

regional level. 

In this study the Bayesian Hierarchical Generalized Linear 

Mixed Models (BHGLMMs) which are used in small area 

estimation because of their ability to incorporate multiple 

levels of model dependencies [8] were considered. 

Posterior distributions of model parameters are estimated 

using Bayes method through combination of observed data, prior 

distributions and the available covariates [13]. Strong spatial 

autocorrelation is generally exhibited in small area level data 

According to Lawson [15], introduction of spatially 

structured random effects in the model residual spatial 

autocorrelation is accounted. Conditional autoregressive priors 

first proposed by Besag et al. [4] are applied in modelling of 

spatially structured random effects. The equations in the paper 

were written using Math Type software [19]. 

3.1. Generalized Linear Mixed Model 

In Generalized Linear Mixed Models (GLMMs), the major 

assumption is that the response variable ��  comes from an 

exponential family of the form 1/ , ~ (.)i iY pθ φ . 

The exponential family is defined as,  

1 1
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( , ) ( , )

( )
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i
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θ θθ φ φ
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for 1,...,i n=  observations and iθ is the scalar canonical 

parameter. 

Equation (2) is obtained by linking the mean 

( / (.)),i
i iu E yi f= β φ  through monotonic link function 

g (.). The link takes different forms depending on the model 

applied for example ��� for Poisson model. 

0
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g f xµ η β µ β ε
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If the form of the functions )·(if  is varied, it can 

accommodate different models such as, spatial, 

spatial-temporal, hierarchical regression and time series. �′	 

are covariates and 'i sε are error terms. 

3.1.1. Poisson-Gamma Model 

A typical Poisson model cannot model extra variance, 

Poisson-gamma (PG) model is also known as Negative 

Binomial model which incorporates gamma distributed 

random-effects is used as an alternative. Poisson-gamma (PG) 

model, has the following two-level formulation: 


�~��
		�� (����); 

��~����� (�, �) 

In first level the assumption is that the random variable iy  

(count data) has Poisson distribution or can be written as 

~ ( )i i i iy Poisson e θµ with probability density function: 
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where ( , )i ix β
−−

µ = µ is regression model 

1 2( , ,..., )T
i i i pix x x x= is a vector of covariates and 

β
−

= ( 1, 2,( ,..., )T
pβ β β β

−
=  are regression coefficients. 

In the second stage, iθ has Gamma distribution or 

~ (i iidGammaθ α,α)  where the probability density function 

is: 
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i i ik eθ θ θ

α
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Γ α
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based on equation above the joint probability density function 

is obtained as follows: 
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 (5) 

The marginal probability density function can be obtained 

as follows 

0
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The distribution of equation is negative binomial with mean 

and variance for iy  given as follows: 

( | , )i i iE Y eβ
−

α = µ and ( | ) 1, i i
i i i

e
Var Y eβ

−

µ = µ + α 
α  

The posterior distribution for iθ  is estimated as follows 
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The posterior distribution for iθ is Gamma based on 

equation 7   or can be written as: 

| , , ~ ( , )i i i i iy Gamma y eθ β α + α µ + α  

The Bayes estimate for iθ , generates the posterior mean and 

posterior variance a, as follows: 

� ( )
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and 

2
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α
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                 (9) 

Spatial correlation of the data is not taken in to account in 

this model since it only introduces a spatially-unstructured 

over-dispersion [21]. Due to the stated disadvantage and 

inability to include covariates Poisson-Gamma model has 

been criticized and has shown to be inferior to Conditional 

Autoregressive (CAR) convolution models which are more 

complex [16]. 

3.1.2. Conditional Autoregressive (CAR) Models 

CAR models have been extensively used to model spatial 

data in various areas such as in epidemiology, agriculture, 

demography, economy and image analysis as model for both 

latent and observed variables 

To obtain latent Gaussian models, Gaussian priors are 

assigned to 0 , (.),i kfβ β  and iε  in equation 2. This can be 

represented as ( , ,...).k is f sβ ′ ′Θ =  where Θ is unobserved 

multivariate Gaussian random variable, whose density π (Θ / φ) 

is controlled by a vector of hyper parameters Φ [17],

1 2( , )φ φΦ = may not follow Gaussian distribution [18]. 

The key components of the Latent Gaussian model are, the 

likelihood of the data π ( y/ Θ ), the Gaussian density of the 

random vector Θ, π ( Θ / Φ ) and the prior distribution of the 

parameter vector π ( Φ ). 

The posterior is therefore defined as 

1

( , / ) ( ) ( / ) ( / , )i i

i

y y xπ απ π π
=

Θ Φ Θ Θ Φ Φ∏          (10) 

The posterior marginal’s for ix and posterior marginal’s for 

Φ or some jΦ can be obtained by applying integrated Nested 

Laplace approximation (INLA) [17]. 

3.2. Integrated Nested Laplace Application (INLA) 

Methodology 

This is an appropriate inference based method for 

approximating the posterior marginal’s of the latent Gaussian 

field ( / ), 1,...,ix y i nπ =  in three steps. 

The posterior marginal’s of the latent effects Θ are written 

as 

( / ) ( / , ) ( / )i ix y x y y dπ π π= Φ Φ Φ∫          (11) 

( / ) ( / )i jy y dπ π −Φ = Φ Φ∫               (12) 

The posterior marginal’s 
~

( / )ix yπ  and 
~

( / )i yπ Φ  can be 

approximated using the Laplace approximation. The first 

approximation to ( / )yπ Φ using Gaussian distributions is 

constructed as follows; 

* ( )~

( , , )
( / ) |

( / )G

y
y

y

ππ
π

Θ=Θ Φ
Θ ΦΦ =

Θ
             (13) 

where 
~

( / , )G yπ Θ Φ  is a Gaussian approximation to the full 

conditional of Θ  and *( )Θ Φ  is the mode of the full 

conditional for, for a given value of Φ . It involves locating 

the mode of ( / )yπ Φɶ which is used to integrate out the 

uncertainty with respect to Φ when approximating the 

posterior marginal of ix . 

The posterior marginals of the latent field are supposed to 

start from ���(�� Ф⁄ , 
)  and approximate the density of 

/ ,ix yΦ  with the Gaussian marginal derived from 

~

( / , )G yπ Θ Φ i.e 

2( / , ) ( ; ( ), ( ))i i iix y N xπ δΦ = Φ Φɶ               (14) 

The marginals of the interest can be computed using 

numerical integration over a multidimensional grid of values 

of Φ  

��(�� 
⁄ ) = ∑ �� (�� Ф ⁄ , 
)��(Ф 
⁄ )∆       (15) 

where the sum is over the values of Φ  with area weights ∆  

[24]. 

The first step in INLA computation involves approximating 

the posterior marginal of Φ  by using Laplace approximation 

in equation (13). 

The second step involves computing the Laplace 
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approximation of ( / , )ix yπ Φɶ for selected values of Φ  which 

improves the Gaussian approximation in equation (10) 

*( , )

( , , )
( / , ) |

( / , , ) i i iLA i x
GG i i

y
x y

x y

ππ α
π − −Θ =Θ Θ

−

Θ ΦΦ
Θ Φ

ɶ
ɶ

 (16) 

where ( / , , )GG i ix yπ −Θ Φɶ is a Gaussian approximation to 

/ , ,i ix y−Θ Φ  around its mode ( , )i ix−Θ Φ . 

An improved version of ( / , )LA ix yπ Φɶ known as 

Simplified Laplace approximation was developed by Rue et al.  

[23]. It involves a series of expansion of ( / ,LA ix yπ Φɶ around 

( )i ix µ= Φ  which corrects for skewness and location and it is 

also less computationally expensive [23]. 

The third step involves combining steps 1 and 2 using 

numerical integration in equation 13 [23]. 

Cervical Cancer Distribution 

Generalized Linear Mixed Model with spatial and temporal 

random effects and assuming that the response variable was 

generated by a Poisson process (count data) was used to model 

cervical cancer cases. 

Poisson-gamma (PG) model, has the following two-level 

formulation: 


�~��
		�� ( ��  �� ); 

�� ~����� ( �, � ) 

Where 
�  represents observed cervical cancers cases for 

each county and �� are the expected cervical cancer cases. 

In convolution model, the Poisson regression model is 

stated as: 

~ ( )i iy Poisson µ  

( )i i iexp X offsetµ β= +  

Where iy  is the observed cervical cancer cases, iX ’s are 

the covariates (when available) for the 
thi  observation and 

offset term is the expected 
thi  population per county. 

In this study cervical cancer cases iy ’s were modelled as 

shown in equation (17) below. 

0( ) ( ) ( ) ( )i j ij trend str i unstr i

j

g X f time f S f Sµ β β= + + + +∑  (17) 

Where jβ ’s are coefficients, ijX is vector of the covariates, 

trendf  is trend component, strf and unstrf are structured and 

unstructured spatial effects of the county. 

i. g(.) is a monotonic link function 

ii. 0β an overall intercept term. 

iii. jβ ’s are coefficients 

iv. Correlated random time effects, trendf , to account for 

time dependence, were modelled via first order 

random walk [14, 15]. The assumption is values in the 

latest year depend on values of the previous year in a 

specific county. The correlated temporal random 

effect, trendf , which has a random walk prior 

distribution, with precision, 1ϕτ was assigned Gamma 

(1, 0.001) prior. 

v. The spatial effects ( )str if S , estimated at county level 

where households were located. The spatial effects by 

county to account for strong spatial autocorrelation, and 

were modelled via normal conditionally autoregressive 

priors (CAR) [4]. 

vi. Where 1, , ,i m= … and 1, , ,j T= …  are counties and 

years respectively; 

1

1 1
| , ~ ( , )

ii

i j u ij jm
uj

ij

j

u u N w u
n

w
δδ

τ
τ

=

∑
∑ ε

i j≠     (18) 

where, uτ is the conditional precision of spatial random 

effects and iδ is the neighborhood of the 
thi  region, 

i
nδ is the 

number of neighbours,

1

m

ij

j

w

=
∑ , and the spatial weight, ijω  

equals 1 if counties i  and j  are neighbours and zero 

otherwise. Spatial distribution is utilized to determine the 

number of neighbours and it is assumed that each county has 

not less than one neighbour. ~uτ  Gamma (1, 0.001) prior 

was assigned as the conditional precision for the spatially 

structured random effect [5]. 

The Gamma ( , )α β density is defined as:

( 1)( ) ( ),
( 1)

exp
α

αβπ τ τ βτ
α

−= −
−

for, 0,τ > where 0,α > the 

shape parameter, and 0β > , the inverse scale parameter. 

( )unstr if S  un-correlated random effects by county were 

assigned a Normal prior,
1

~ (0, )unstr
v

f N
τ

, with precision, vτ  

assigned Gamma (1, 0.001) prior. 

3.3. Model Selection Criteria 

Deviance Information Criteria 

The Deviance Information Criterion (DIC) [26] similar to 

Akaike Information Criterion (AIC) and is applied in 

hierarchical Bayesian models. It is defined for improper priors 

and provides the effective number of parameters in the 

Bayesian models. 

The deviance is 

( , ) 2 ( | , )i i

i I

D x log y x constantθ π θ= − +∑
ε

       (19) 

The model with smaller DIC value [26] was used to 

calculate the relative risks. The calculated relative risks are 

subsequently mapped to geographical areas to produce spatial 
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temporal maps. 

4. Results 

Data in this study was analyzed using spatial temporal model 

R-packages. The packages contain functions for Generalized 

Linear Mixed Model (GLMM) and INLA methodology. 

4.1. Spatial Temporal Maps 

This section displays the distribution of notified cases, 

Standard Incidence Ratios (SIR) map, for all counties with 

notified cervical cancer cases over two years (2015-2016). 

Where ( 1iSIR > ) indicates the risk of cervical cancer is 

higher, equal ( 1iSIR = ) or ( 1iSIR < ) lower risk than that 

which is expected from the standard population. 

 

Figure 2. Standardized Incidence Ratios (SIR). 

Clearly, from Figure 2 in most counties there was greater risk 

of cervical cancer cases than expected from the standard 

population since all counties where data was available had a 

SIR value greater than 1. Bomet=1.59, Embu =7.13, Kakamega 

=2.02, Kiambu =2.42, Machakos =3.44, Meru=4.82, Mombasa 

=5.51, Nairobi=1.66, Nakuru =2.26, Nyeri =3.07. 

The deep purple areas indicated higher risks (SIR>1) while 

the light shaded areas are low risk (SIR<1). The highest 

burden of cervical cancer cases was in Embu, Mombasa, Meru, 

Machakos and Nyeri counties respectively. 

4.2. Assessing the Presence of Spatial Autocorrelation 

Spatial-autocorrelation in spatial-temporal models is 

modelled via random effects. Therefore, assessment of 

presence of spatial autocorrelation was conducted by 

computing the residuals of a fitted simple Poisson log-linear 

model. 

Table 1. Spatial autocorrelation estimate. 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 8.09e-11 0.0306 4.15 1 

Table 2. Over dispersion test. 

z-value p-value Dispersion parameter 

4.15 0.0306 31.202 

The over dispersion parameter is equal to 31.202 indicating 

a relatively high overdispersion, the Poisson model has equal 

mean and variance assumption. 

Moran’s I statistic was computed and permutation test for 

each year of the data to check for spatial-autocorrelation in the 

model residuals. 

The null hypothesis is; there is no spatial autocorrelation 

while the alternative is; there is positive spatial autocorrelation. 

The estimated Moran’s I statistic was 0.0399 and the p-value 

was 0.2104>0.05, suggesting there was no unexplained spatial 

autocorrelation in the residuals. 

Table 3. Moran I statistic. 

Moran I Statistic p-value 

0.0399 0.2104 

4.3. Poisson-gamma Model 

A Poisson-gamma (Negative-Binomial) model that takes 

care of over dispersion model and zero inflated variables was 

fitted. The dispersion parameter for random effect was 1.8692 

which was close to 1 and the Akaike Information Criterion 

(AIC) was 262.9605. 

Table 4. Poisson-Gamma estimate. 

 Estimate Std. Error t-value Pr(>|z|) 

(Intercept-Fixed effects) -0.3178 0.3731 -0.852 0.399 

 Summary of random effects estimates 

Baringo 0.0144 2.5729   

Bomet 2.1385 0.4115   

Bungoma 0.0058 2.5734   

…     

Relative risk estimates for counties where data was 

available were presented in Table 5. In counties where data 

was not available the relative risks ranged from 0.01 to 0.06 

(Lamu). 

Table 5. Relative risks for cervical cancer Poisson-Gamma model. 

County Relative Risk 

Bomet 2.14 

Embu 9.89 

Kakamega 2.78 

Kiambu 3.40 

Machakos 4.76 

Meru 6.48 

Mombasa 7.41 

Nairobi 2.28 

Nakuru 2.19 

Nyeri 4.28 
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The relative risks in Table 5 revealed that Embu county had 

the highest risk of cervical cancer, followed by Mombasa, 

Meru, Machakos, Nyeri, Kiambu, Kakamega, Nairobi, 

Nakuru and Bomet county respectively. 

4.4. Spatio-temporal Modelling 

Standardized Incidence Ratios (SIRs) sometimes can be 

useful, but in areas with rare diseases or with small (possibly 

empty) samples SIRS may be misleading and not very reliable 

as measure of risk since expected counts may be low as 

compared to actual observations. 

Therefore, estimating disease risks using models which 

borrow information from neighbouring areas and incorporate 

covariates information in shrinking or smoothing of extreme 

values based on small samples is appropriate [10]. 

The parametric formulation for spatial- temporal models 

was introduced by Bernardinelli et al. [3], with assumption 

that the linear predictor can be written as: 

��# � � $ %� $ &� $ �'                        (20) 

%� is the spatial structured and &� unstructured components 

with a main linear trend β , which represents the overall time 

effect. 

In R-INLA, the first model was specified as follows: 

formula1 <-y~1+f (Area, model=“bym”, graph= Kenya.adj) 

+ f (Area1, Year, model= “iid”) + Year…Model 1 

Area in Model 1 represents the spatial structured effect 

while Area1 represents spatial unstructured component. 

This specification assumes a linear effect of time for each 

area ( )i . The parameters estimated by INLA are 

� � (�, �, %, &) , while the hyper-parameters are * �
(+, , +-). 

The assumption of linearity in the i  can be realized using a 

dynamic non parametric formulation for the linear predictor 

it i i tα υ ν= + + + γη                         (21) 

Here, α , iυ  and iν  have the same parameterisation as in 

(20); however, the term tγ  denotes the temporally structured 

effect, where it is modelled using a first order random walk. In 

this formulation parameters estimated by INLA are 

{ }, , ,θ α ξ υ γ= and hyper-parameters are represented by

{ }, ,υ ν γψ τ τ τ= . 

This second model was specified in R-INLA as: 

formula2 <-y~1+f (Area, model=“bym”, 

graph=Kenya.adj)+ f(year, model= “rw1”)+ f(Area1, 

model=“iid” )…Model 2 

A third model expanding Model 1 to explain the time trend 

of cervical cancer cases and to include space-time interaction 

was specified as follows: 

it i i t itα υ νη = + + + γ + δ                    (22) 

In this model parameters estimated by INLA are 

{ }, , , ,θ α ξ υ γ δ= and hyper-parameters are represented by

{ }, , ,υ ν γ δψ τ τ τ τ= . 

The third model R-INLA code was formulated as follows: 

formula3 <-y~1+f (Area, model=“bym”, graph=Kenya.adj) 

+ f (year, model= “rw1”)+ f(Area. Year, 

model=iid” )…(Model 3) 

The DIC values for the three models are presented in Table 

6. Despite the added complexity the third model with dynamic 

time trend and space-time interaction had a smaller DIC value 

indicating a that the model fitted well to the data and was the 

most appropriate and the relative risks were obtained from the 

model. 

Table 6. Spatial-temporal models Deviance Information Criterion (DIC) for 

defined Equations (13)-(15). 

Model D  Dp  DIC 

Model 1 157.0350 39.2626 196.2976 

Model 2 174.4258 30.1654 204.5911 

Model 3 158.1371 35.6865 193.8236 

The disease risks are usually presented as relative risks in 

Poisson models. Posterior relative risk distributions greater 

than 1 indicates an elevated risk of the disease. 

Table 7. Relative risks for cervical cancer Poisson-Gamma model. 

County Relative Risk 

Bomet 1.53 

Embu 7.92 

Kakamega 2.06 

Kiambu 2.80 

Machakos 3.48 

Meru 4.43 

Mombasa 5.12 

Nairobi 1.63 

Nakuru 1.95 

Nyeri 3.33 

 

Figure 3. Distribution of the county specific relative risks of cervical cancer 

in the spatial-temporal model. 
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The relative risks in Table 7 indicates that Embu county had 

the highest risk of cervical cancer, followed by Mombasa, 

Meru, Machakos, Nyeri, Kiambu, Kakamega, Nakuru, 

Nairobi and Bomet county respectively. 

In Figures 3-4 elevated risks are manifested by values 

greater than 1 in some parts of the country, and a posterior 

probabilities greater than 0.8. 

 

Figure 4. Map of the uncertainty for the spatial effect: .(�� / 1|
). 

5. Discussion and Conclusion 

The results show that counties where data was available 

among them Embu, Mombasa, Meru, Machakos and Nyeri 

counties had very high risk of cervical cancer. The national 

and county institutions can utilize spatial temporal tools to 

identify various cancer hot spots and improve screening and 

treatment facilities based on specific cancer case. 

In counties where data was not available the model showed 

relative risks of cervical cancers was not high but the risk was 

present, therefore spatial temporal models are very 

appropriate to estimate relative risks of diseases even when 

there is a small sample (and possibly an empty sample) in a 

given area by borrowing information from other neighboring 

regions. Based on the study findings we recommend the 

counties with high relatives to create awareness, provide 

screening services and provide vaccines to the groups which 

are at higher risk of cervical cancer. 

Despite success of this study, the biggest impediment in 

spatial temporal study is non-availability of adequate county 

data which will provide more insight on the distribution of 

cervical cancer cases in Kenya. Therefore the National Cancer 

Registry in collaboration with counties health departments 

should work closely to enhance cancer data collection. This 

will facilitate research and inform the appropriate measures to 

be implemented in mitigation of the increase of cancer cases. 
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